Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
We all know what they say – the bigger the data, the better. But when the data gets really big, how do you mine it and what deep learning framework to use? This talk will survey, with a developer’s perspective, three of the most popular deep learning frameworks—TensorFlow, Keras, and PyTorch—as well as when to use their distributed implementations.
We’ll compare code samples from each framework and discuss their integration with distributed computing engines such as Apache Spark (which can handle massive amounts of data) as well as help you answer questions such as:
As a developer how do I pick the right deep learning framework?
Do I want to develop my own model or should I employ an existing one?
How do I strike a trade-off between productivity and control through low-level APIs?
What language should I choose?
In this session, we will explore how to build a deep learning application with Tensorflow, Keras, or PyTorch in under 30 minutes. After this session, you will walk away with the confidence to evaluate which framework is best for you.
Login to see the comments