Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Miguel Molina- Sound Data Science (DatabeersMlg 12, 6/9/2018)

25 views

Published on

Miguel Molina Solana. Marie Curie Research Fellow @ Data Science Institute, Imperial College London
https://www.linkedin.com/in/miguems/
Título: “Sound Data Science”
Resumen: ¿Puede el sonido usarse para la exploración e interpretación de datos dentro de la Ciencia de Datos? ¿Por qué no se hace? ¿Es la visualización una herramienta más adecuada? ¿Son mecanismos complementarios? El proyecto DATASOUND intenta ofrecer respuestas a algunas de estas preguntas.
Evento organizado por María Sánchez, @cibermarikiya.

Published in: Data & Analytics
  • Be the first to comment

  • Be the first to like this

Miguel Molina- Sound Data Science (DatabeersMlg 12, 6/9/2018)

  1. 1. @DataBeersMLG 06-Sept-2018 Miguel Molina-Solana Sound Data Science
  2. 2. Sound Data Science??? Data Science... with Sound But also… Enhanced Data Science
  3. 3. Sound Data Science???
  4. 4. THE FACTS
  5. 5. 1 - How we do Data Science BTW!
  6. 6. 1 - How we do Data Science
  7. 7. 1 - How we do Data Science
  8. 8. 2 - Humans have 5 senses https://www.youtube.com/watch?v=-2caC-uI7l4
  9. 9. THE QUESTION
  10. 10. Why don’t we use sound for Data Science? touch smell sound taste
  11. 11. THE ANSWER
  12. 12. So…
  13. 13. Why?? … and because I got the money
  14. 14. THE PROBLEM
  15. 15. 1. Analogies SIGHT SOUND
  16. 16. THE ‘SOLUTION’
  17. 17. Find the differences…
  18. 18. Research and practice is needed on • Which sound variables are available? • Which are their best uses? • Identify cognitively-meaningful mappings (individual, pairs, ….) • Best uses cases for sound vs visual • Best uses cases for sound + visual
  19. 19. 2 We need (proper!) training
  20. 20. Conclusions Humans have 5 senses… But for Data Science we only use one. To use the others… we need to better understand how data can be encoded. identify the best uses cases for each sense. So, from now on… Let’s not only see the data!
  21. 21. Thanks!! Miguel Molina-Solana mmolinas@ic.ac.uk .

×