Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Data Applied: Forecast

555 views

Published on

Data Applied: Forecast

Published in: Technology, Education
  • Be the first to comment

  • Be the first to like this

Data Applied: Forecast

  1. 1. 5<br /> Data-Applied.com: Forecast<br />
  2. 2. Perceptron<br />Perceptron can be used for linear classification<br />Linear classification using the perceptron<br />If instances belonging to different classes can be divided in the instance space by using hyper planes, then they are called linearly separable<br />If instances are linearly separable then we can use perceptron learning rule for classification <br />
  3. 3. Multilayer Perceptron<br />Multilayer perceptron:<br />We can create a network of perceptron to approximate arbitrary target concepts <br />Multilayer perceptron is an example of an artificial neural network<br />Consists of: input layer, hidden layer(s), and output layer <br /> Structure of MLP is usually found by experimentation<br />Parameters can be found using back propagation or montecarlo simulations <br />
  4. 4. Example of multilayer perceptron<br />
  5. 5. Error metric<br />The parameters to be selected such that the minimum error is produced<br />Error metric used:<br />f(x) = 1/(1+exp(-x))<br />Error = ½(y-f(x))^2<br />
  6. 6. Using montecarlo to get the parameters<br />Distribute some random samples in the weight vector space<br />Choose the ones which minimizes errors<br />Repeat the process till convergence<br />Finally points at the convergence gives us the value of the parameters<br />
  7. 7. Forecasts using Data Applied’s web interface<br />
  8. 8. Step1: Selection of data<br />
  9. 9. Step2: Selecting Forecasts<br />
  10. 10. Step3: Result<br />
  11. 11. Visit more self help tutorials<br /><ul><li>Pick a tutorial of your choice and browse through it at your own pace.
  12. 12. The tutorials section is free, self-guiding and will not involve any additional support.
  13. 13. Visit us at www.dataminingtools.net</li>

×