Successfully reported this slideshow.
Upcoming SlideShare
×

# Data Applied: Forecast

555 views

Published on

Data Applied: Forecast

Published in: Technology, Education
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

### Data Applied: Forecast

1. 1. 5<br /> Data-Applied.com: Forecast<br />
2. 2. Perceptron<br />Perceptron can be used for linear classification<br />Linear classification using the perceptron<br />If instances belonging to different classes can be divided in the instance space by using hyper planes, then they are called linearly separable<br />If instances are linearly separable then we can use perceptron learning rule for classification <br />
3. 3. Multilayer Perceptron<br />Multilayer perceptron:<br />We can create a network of perceptron to approximate arbitrary target concepts <br />Multilayer perceptron is an example of an artificial neural network<br />Consists of: input layer, hidden layer(s), and output layer <br /> Structure of MLP is usually found by experimentation<br />Parameters can be found using back propagation or montecarlo simulations <br />
4. 4. Example of multilayer perceptron<br />
5. 5. Error metric<br />The parameters to be selected such that the minimum error is produced<br />Error metric used:<br />f(x) = 1/(1+exp(-x))<br />Error = ½(y-f(x))^2<br />
6. 6. Using montecarlo to get the parameters<br />Distribute some random samples in the weight vector space<br />Choose the ones which minimizes errors<br />Repeat the process till convergence<br />Finally points at the convergence gives us the value of the parameters<br />
7. 7. Forecasts using Data Applied’s web interface<br />
8. 8. Step1: Selection of data<br />
9. 9. Step2: Selecting Forecasts<br />
10. 10. Step3: Result<br />
11. 11. Visit more self help tutorials<br /><ul><li>Pick a tutorial of your choice and browse through it at your own pace.
12. 12. The tutorials section is free, self-guiding and will not involve any additional support.
13. 13. Visit us at www.dataminingtools.net</li>