Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Like this presentation? Why not share!

- Physics -vectors-projectile motion by stephm32 6795 views
- Investigating The Lever V5 Complete by Michigan Mathemat... 380 views
- Lever's law by CONSUELO SIMÓN 1058 views
- Tides by rebelbrindley 1481 views
- Balanced and unbalanced forces copy by Spydawebbie 915 views
- Rotational balance by Physics Amal Sweis 897 views

10,379 views

Published on

GCSE Physics double award notes

Published in:
Education

No Downloads

Total views

10,379

On SlideShare

0

From Embeds

0

Number of Embeds

11

Shares

0

Downloads

210

Comments

0

Likes

7

No embeds

No notes for slide

- 1. Forces- Newton’s Laws GCSE Year 11
- 2. Learning Intentions <ul><li>By the end of the lesson we will be able to… </li></ul><ul><li>Identify and label forces acting on an object </li></ul><ul><li>Recall the effect of applying balanced forces </li></ul><ul><li>Recall the effect of applying unbalanced forces </li></ul>
- 3. The Effect of Forces <ul><li>The effect of a force is only shown when there is an ‘unbalanced force’ acting (also known as a net force or resultant force). </li></ul>
- 4. Balanced forces <ul><li>If there is no net force then the forces on an object are said to be balanced </li></ul><ul><li>Ricky’s force due to weight is equal to the reaction force of the chair but they act in opposite directions </li></ul>Ricky Tomlinson is at rest… Chair’s reaction force Weight
- 5. Frictional Force Thrust
- 6. Continues at constant speed in a straight line…
- 7. Balanced Forces and Motion <ul><li>When an object has balanced forces acting on it will </li></ul><ul><ul><li>remain at rest </li></ul></ul><ul><ul><li>or </li></ul></ul><ul><ul><li>move with constant speed in a straight line (uniform velocity / no acceleration) </li></ul></ul>
- 8. Learning Intentions <ul><li>By the end of the lesson we will be able to… </li></ul><ul><li>Recall that an unbalanced force acting on an object will cause its motion to change </li></ul><ul><li>State Newton’s Laws of motion </li></ul>
- 10. Newton and his Laws <ul><li>Sir Isaac Newton is a dead famous physicist who studied forces. </li></ul><ul><li>Newton’s First Law of motion- </li></ul><ul><li>An object will remain at rest or travel at a constant velocity unless an unbalanced force acts on it </li></ul><ul><li>(Constant velocity means the object will not change its speed or direction ) </li></ul>Page 35
- 11. Investigation <ul><li>How does the change in velocity of an object vary as the unbalanced force is increased? </li></ul>
- 15. <ul><li>Acceleration is directly proportional to the force </li></ul>Interpreting the Graphs acceleration Force
- 16. Graph and Results Table for Girder One Calculate the Gradient of the middle line using m = (y2-y1) / (x2-x1) and two points on the line of best fit.
- 17. Learning Intentions <ul><li>By the end of the lesson we will be able to… </li></ul><ul><li>State Newton’s 2 nd Law of motion and use it to solve simple problems </li></ul><ul><li>Recognise the connection between circular motion , acceleration and an unbalanced force </li></ul>
- 18. Newton’s Second Law of Motion <ul><li>The size of the acceleration due to an unbalanced force acting on an object can be calculated using the formula- </li></ul><ul><li>Unbalanced Force = Mass x Acceleration </li></ul><ul><li>F = m x a </li></ul><ul><li>Newton = kg x m/s 2 </li></ul>Acceleration and change in velocity have similar meaning (increase in speed, decrease in speed or change of direction) F a m
- 19. <ul><li>Unbalanced Force = Mass x Acceleration </li></ul><ul><li>F = m x a </li></ul><ul><li>Newton = kg x m/s 2 </li></ul>Newton’s 2 nd Law F a m
- 20. Newton’s 2 nd Law- Example Question <ul><li>What is the force needed to make a rock of 2 kg accelerate at 0.25 m/s 2 ? What is the acceleration of the rock when an unbalanced force of 100 N is applied to it? </li></ul>F = m x a 100 = 2 x a 100 / 2 = a 50 m/s 2 = a F = m x a = 2 x 0.25 = 0.5 N
- 21. Your Turn… <ul><li>Try question 1 and 4 page 37 </li></ul>
- 22. Bit more complicated… <ul><li>Darren Clarke strikes a ball on a level putting green. </li></ul><ul><li>Name the force opposing the motion of the ball across the green </li></ul><ul><li>If the ball has a mass of 0.05 kg then what is the value of the opposing force causing a deceleration of 0.3 m/s 2 ? </li></ul>
- 23. The Answer <ul><li>FRICTION </li></ul><ul><li>F = m x a </li></ul><ul><li>F = 0.05 kg x (-0.3) m/s 2 </li></ul><ul><li>F = -0.015 N (acting against the motion of the ball) </li></ul>0.015 N Motion of the ball Causing the ball to slow down
- 24. Sinks it…
- 25. One step further… <ul><li>Padraig Harrington has an identical shot the same distance from the pin (hole). </li></ul><ul><li>A wind has started to blow from behind Padraig with a constant force of 0.01 N. If he plays the same shot as Darren, what will the acceleration of the ball be? </li></ul>
- 26. The Answer <ul><li>Forces Acting on the ball </li></ul><ul><li>Unbalanced force </li></ul><ul><li>0.01 N - 0.015 N = -0.005 N </li></ul><ul><li>This force causes a deceleration </li></ul><ul><li>F = m x a </li></ul><ul><li>- 0.005 = 0.05 x a </li></ul><ul><li>a = (-0.005 / 0.05) = - 0.1 m/s 2 </li></ul>0.015 N 0.01 N Motion of the ball The ball will not slow down as quickly
- 27. Missed it…
- 28. Circular Motion
- 30. Centripetal Force <ul><li>The unbalanced force is provided by a force acting towards the centre of the circle called the centripetal force . </li></ul><ul><li>An unbalanced force causes a change in motion , an acceleration (speed steady but direction always changing) </li></ul>F v
- 31. Bucket on a rope Electron around a nucleus Planetary Motion Car turning a corner Tension Electrostatic Gravity Friction Add to the diagrams the direction and name of the force causing the object’s motion +ve
- 32. Circular Motion Facts <ul><li>The smaller/greater the mass, the bigger the force needed for circular motion </li></ul><ul><li>The smaller/greater the radius of the circle, the bigger the force needed for circular motion </li></ul><ul><li>The slower/faster the speed of the object, the bigger the force needed for circular motion </li></ul>
- 33. Gravity On Gravity Off I’m so lonely right now…
- 34. No resultant force… <ul><li>When the centripetal force is removed the object will continue to move along the tangent to the circle </li></ul>Earth Moon If gravity was removed the moon’s motion would be in a straight line as shown

No public clipboards found for this slide

×
### Save the most important slides with Clipping

Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.

Be the first to comment