Estadística y probabilidad

4,380 views

Published on

Estadística y probabilidad

  1. 1. ESTADÍSTICA Y PROBABILIDAD PREPARACIÓN SIMCE 2012 OBJETIVO CLASE: IDENTIFICAR Y RECORDAR CONCEPTOS BÁSICOS DE LA ESTADÍSTICA DESCRIPTIVA
  2. 2. Todo comienza con datosos
  3. 3. EJEMPLOS: Los censos de población se hacen por medio de la aplicación de una entrevista a las personas de una localidad para saber cuántas personas habitan ahí, a qué se dedican y sus edades, entre otras cosas. En la escuela “Scole Creare” la directora lleva un registro de los datos personales de los niños.
  4. 4. ¿Qué es la estadística?Estadística es la ciencia de:- Recolectar- Distribuir DATOS- Organizar- Interpretar Para transformarlos en información, para la toma eficiente de datos.
  5. 5. POBLACIÓN-MUESTRAPoblación- Las edades de los Estudiantes de chile.- Mujeres embarazadas de Chile.- Enfermos de sida en el mundo.- Cantidad de profesor del colegio Scole Creare.Muestra- Las edades de los estudiantes de segundo medio.- Mujeres embarazadas en la cuidad de Temuco, Chile.- Enfermos de sida en una localidad.- Cantidad de profesores de matemática del Colegio Scole Creare
  6. 6. FORMALICEMOS POBLACIÓN Colección de todos los elementos que se están estudiando y acerca de los cuales intentamos establecer conclusiones y poseen al menos una característica en común. MUESTRA Es una medida resumen que describe una característica de toda la población. MUESTRA ALEATORIA Es una muestra al azar. Para que se considere propia y representativa de la población, deberá ser al azar. VARIABLE CUALITATIVA Son aquellas cuando las observaciones realizadas se refieren a un atributo (no son numéricas) por ejemplo: sexo, nacionalidad, profesión, etc VARIABLE CUANTITATIVA Son aquellas en que cada observación tiene un valor expresado por un número real, Ej: peso, temperatura, etc
  7. 7. ¿Cómo tabulamos los datos? Tablas Tablas de frecuencias (distribución de frecuencias) Frecuencias relativas (porcentaje del total) Gráficos Estadísticos Histogramas Gráficos de línea Gráficos de Barra Grafico Circular Pictograma
  8. 8. Los datos los podemostabular utilizando la: Frecuencia (f): Números de veces que se repite un dato, también se le llama frecuencia absoluta. Frecuencia Acumulada: Es la que obtiene sumando ordenadamente las frecuencias absolutas hasta la que ocupa la ultima posición (fac). Frecuencia Relativa : Es el cociente entre uno de los valores de la variable y el total de datos, expresada en un tanto porciento.(fr) fr= f/ n, n: Número total de datos.
  9. 9. Ejemplo Si realizamos una encuesta a los estudiantes de un curso, para saber que materia le gusta mas, ellos responden: Materia Frecuencia Frecuencia Frecuencia Absoluta (f) Relativa (fr) Acumulada Castellano 5 5/20 0,25 25% 5 Matemática 4 4/20 0,2 20% 5+4=9 Historia 6 5+4+6=15 Artes 3 Visuales Ingles 2 20 Total 20
  10. 10. EJERCICIO 1) Durante el mes de julio, en una ciudad se han registrado las siguientes temperaturas máximas: 32, 31, 28, 29, 33, 32, 31, 30, 31, 31, 27, 28, 29,30, 32, 31, 31, 30, 30, 29, 29, 30, 30, 31, 30, 31, 34, 33, 33, 29, 29. Realiza una tabla de valores donde se identifique la variable (La temperatura) ordenada de menor a mayor, la frecuencia absoluta, la frecuencia relativa y la frecuencia acumulada.
  11. 11. ESTADISTICA DESCRIPTIVAOBJETIVO CLASE: Identificar los diferentestipos de gráficos utilizados para tabulardatos .
  12. 12. HISTOGRAMAS En el eje horizontal se ubica el intervalo o dato en cuestión y en el eje vertical anotamos la frecuencia o frecuencia relativa. Ejemplo: Edades de los alumnos de un colegio:
  13. 13. Gráficos de Línea Este tipo de gráficos frecuentemente aparece en diarios y revistas, ya que ilustra con mucha claridad las variaciones que tiene alguna variable en estudio. Ejemplo: Fluctuación del precio de la gasolina durante un mes:
  14. 14. Gráfico de Barra Es un gráfico en el cual el dato en estudio (o intervalo) es puesto en el eje horizontal, se utilizan rectángulos cuyo alto, indicado en el eje “y” señala el valor del dato en estudio. Ejemplo: Número de salas de cine en el país:
  15. 15. Gráfico Circular En el gráfico circular cada sector circular (por ende cada ángulo central), es proporcional al valor que corresponde a cada dato. Ejemplo: Una encuesta practicada a 180 adultos, para determinar si estos fumaban o no, se resume en el siguiente gráfico circular:
  16. 16. Pictograma Es un gráfico donde se ocupa una figura o ícono que representa el dato que se está estudiando. Ejemplo: Número de líneas instaladas en una determinada ciudad durante 3 años consecutivos.
  17. 17. MEDIDA DE TENDENCIA CENTRAL Las medidas de tendencia central son indicadores que representan valores numéricos en torno a los cuales tienden a agruparse una variable estadística. Los principales son: Media aritmética Mediana Moda
  18. 18. MEDIA ARITMÉTICA Es el cociente entre la suma total de datos y la cantidad total de estos. Es mas conocido como el promedio . Ejemplo: Pedrito ha obtenido las siguientes notas en Ciencias: 6,0 – 5,8 – 7 – 6,8 – 5,6 Su media aritmética o promedio es: ???
  19. 19. MEDIANA Es el dato que ocupa la posición central de la muestra cuando estos se encuentran ordenados de forma creciente o decreciente. Si la muestra tiene un número par de datos, la mediana es la media aritmética de los dos términos centrales. Ejemplo: ¿Cuál es la mediana del siguiente conjunto de datos: 3,7,6,5,5,7,6,8,7 ?
  20. 20. MODA Es el dato que aparece con mayor frecuencia, es decir el que mas se repite. Ejemplo: ¿Cuál es el dato que mas se repite? 2,6,7,8,9,11,12,2,5,4,2,7,2

×