Selfsys

596 views

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
596
On SlideShare
0
From Embeds
0
Number of Embeds
23
Actions
Shares
0
Downloads
11
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Selfsys

  1. 1. Fluidic mediated self‐assembly for complex,  hybrid micro/nanosystems J. Brugger, A. Martinoli, N. Spencer, B. Nelson,  H. Wolf, H. Knapp, L. ScibozSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  2. 2. Assembly challenge of N/MEMS Today The challenge of tomorrow • Many different kinds of • Finding a way to assemble the micro/nano devices, MEMS, bricks into functional S&A, CMOS, OLED, etc micro/nano-systemsSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems 2
  3. 3. SoA for integrating multifunctional N/MEMS• Co-integration (if possible)• Separate fabrication followed by joining• Wafer Bonding; Tape automatic bonding• Pick & Place; Robotic assembly• Challenge for highly miniaturized systems• Challenge for very large numbers of components• SELFSYS:  Contribute with enabling manufacturing for future micro-assembly applicationsSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems 3
  4. 4. Fluidic mediated self-assembly• Known concept in R&D• Using capillary forces to align components• At the interface of liquids• First industrial examples emerging Hydrophobic area Lubricant Srinivasan, Boehringer, Mastrangeli, van Hof, Lambert U Washington, Seattle IMEC, BelgiumSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems 4
  5. 5. Fluidic mediated self-assembly 10 mmSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  6. 6. Fluidic mediated self-assembly MEMS Modelling Surfaces RFID chip Gold bump + + + ––– V ~ antenna Applications 10 mm MicrofluidicSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  7. 7. SELFYS synapsisSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems 7
  8. 8. Loic Jacot‐Descombes Cathrein Hückstädt Jonas Wienen Maurizio Gullo (ETHZ) (EPFL) (CSEM) (EPFL) Didi Xu (ETHZ) Deepak Kumar M. Mastrangeli (ETHZ) (EPFL) V. Nagaiyanallur GMermoud (EPFL) (ETHZ) M/NEMS: J. Brugger (EPFL), Distributed systems: A. Martinoli (EPFL), Surface chemistry: N. Spencer (ETHZ), Nano-Robotics: B. Nelson (ETHZ), Microfluidics: H. Knapp (CSEM), Self assembly: H. Wolf (IBM), RFID: L. Sciboz (icare Sion);  add-on SELFSYS+: Ch: Hierold, D. Poulikakos (ETHZ)SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems 8
  9. 9. Progress within SELFYS• MEMS part fabrication• Surface functionalization• In-liquid self-assembly experiments• Field induced assembly• Template induced assembly• Modeling RFID chip Gold bump + + + ––– V ~ antennaSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems 9
  10. 10. Progress within SELFYS• MEMS part fabrication• Surface functionalization• In-liquid self-assembly experiments• Field induced assembly• Template induced assembly• Modeling RFID chip Gold bump + + + ––– V ~ antennaSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems 10
  11. 11. Investigated shapes Main  Expected  Expected  Shape: Scheme: Picture: material: advantages: disadvantages : Disc  not restricted 1 SU‐8 low SA yield slices to pairs easy  assembly  Flat 2 SU‐8 fabrication  possible on  cylinders and handling opposite side Rounded  higher 3 SU‐8 cylinders pairing yield Half‐ SU‐8 or  even higher  smaller volume 4 spheres Ormocomp yield in SA (cavity)SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems 11
  12. 12. Self-assembly of SU-8 cylinders At water – Si oil interface: At water surface: At the bottom: After water evaporated:SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems 12
  13. 13. Fabrication of SU-8 microcapsulesSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  14. 14. Fabrication of Bi-color SU-8 cylindersSEM images of the cylinders before release  Optical image of un‐specific assembled parts in DI (diameter ~ 100 um and height ~100 um) water after stirring.SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  15. 15. Surface functionality for specific assembly Yield(assembled/total): ~ 65 %SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  16. 16. Surface Modification of SU8 Plasma treatment: CA 70‐80 deg CA < 10 degSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems 16
  17. 17. Photo-cleavable polymer layerCovalent grafting of any desired polymer onto SU‐8 can be achieved by this methodology.SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  18. 18. Half-sphere shape by inkjetting D Angle max at the edge: ν = CA + 180° ‐ ф 100 umSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  19. 19. Adhesion force modulation Calculated surface correlation: 1.60E+06 1.40E+06 Ring Goal E2 1.20E+06 Multi ring 1.00E+06 Force 8.00E+05 6.00E+05 dE 4.00E+05 2.00E+05 E1 40um 0.00E+00 ‐60 ‐40 ‐20 0 20 40 60 Microfabricated Srinivasan et al. 2001, J.  Alignment [um] capsules Microelectromech. Syst. 10  17–24 Materials investigated: Carbon coated tip/sample Teflon (C4F8) coated tip/sample SphereTip© Au coated + dodeca thiols (DDT)  monolayer tip/sample R=2µmSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  20. 20. Force Curves / Teflon Coated Tip and Sample movement parameter value tip # curves 500 None or only very small and unstable  # positions  100 attracting force could be observed  teflon speed 0.5 Hz for the Teflon coated tip and sample  DI water rest time on sample  0.5 s measurements sample temperature 22°C humidity 33% Force Curve Adhesion Force DI water Sample retractive snap outSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  21. 21. Forces between surfaces / summary Material Attraction Force Adhesion force Material E2 E1 dE DDT 6e-6 nN/nm^2 3.8e-4 nN/nm^2 DDT 1.16 mN 0.29 mN 0.87 mN Carbon 3e-5 nN/nm^2 4e-4 nN/nm^2 Carbon 1.23 mN 0.31 mN 0.92 mN Teflon 0 nN/nm^2 1e-4 nN/nm^2 Teflon 0.31 mN 0.08 mN 0.23 mN •Hydrophobic interaction forces could be  1.60E+06 Ring quantitatively assessed by AFM. 1.40E+06 1.20E+06 Goal Multi ring E2 1.00E+06 •Carbon and DDT show similar adhesion Force 8.00E+05 force. 6.00E+05 dE 4.00E+05 •Carbon better suited for micro fabrication. 2.00E+05 E1 0.00E+00 ‐60 ‐40 ‐20 0 20 40 60 Alignment [um] SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  22. 22. Progress within SELFSYS• MEMS part fabrication• Surface functionalization• In-liquid self-assembly experiments• Field induced assembly• Template induced assembly• Modeling RFID chip Gold bump + + + ––– V ~ antennaSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems 22
  23. 23. 3 stage fluidic assembly system1. Preparation - Transfer of parts into functional fluid2. Assembly - Agitation of particles to drive self-assembly3. Sorting - Sorting out and transferring back Supply fluid cycle not correctly assembled parts Sedimentation filter Reaction Container for  chamber assembled parts Functional fluid cycle SorterSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  24. 24. Reaction chamber Chamber size: 1 cm diameter Glass unit Outlet (filtered) Inlet and filtered outlet (laser cut) Filter  within  Piezo-actuation sealing RC‐Core Change in amplitude/frequency Outlet Inlet Shear forces at bubbles Bubbles moving around PDMS ‐ Sealing US‐transducersSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  25. 25. Progress within SELFSYS• MEMS part fabrication• Surface functionalization• In-liquid self-assembly experiments• Field induced assembly• Template induced assembly• Modeling RFID chip Gold bump + + + ––– V ~ antennaSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems 25
  26. 26. Field assisted assembly Dielectrophoretic assisted Octomag motion of assembly magnetic SU-8 flaps • RFID chips (mCHIP/Hitachi) • Magnetic nanoparticle in in liquid. photo-patternable SU-8 • Micro-chips with unique codes RFID chip Gold bump + + + ––– V antennaSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  27. 27. Progress within SELFSYS• MEMS part fabrication• Surface functionalization• In-liquid self-assembly experiments• Field induced assembly• Template induced assembly• Modeling RFID chip Gold bump + + + ––– V ~ antennaSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems 27
  28. 28. Multi-scale modeling Can we devise a unique methodological framework for modeling and controlling  these self‐assembling systems, across length‐scales? 2D 2D 3D Robotic building block MEMS building block5cm ALICE robot Typical size 50 to 500 um Typical size: 2 centimetersSwarm Typical swarm size: 10^2 to  Typical swarm size: a few dozen Power to move 10^3 units unitsSimple on board  Passive units: only local  Active units: sensing and actuationintelligence interactions»» Capillary and magnetic forces»»Collective behavior Hydrophobic forces»» Stochastic, fluidic control (pump) Stochastic, fluidic control  (piezo)SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems 28
  29. 29. Modeling Distributed Systems Macroscopic 1: rate equations, mean field approach, whole population Abstraction Common metrics Macroscopic 2: Chemical Reaction Network, stochastic simulations Microscopic 1: Monte Carlo model, 1 robot = 1 agent, non-spatial Microscopic 2: Agent-Based model, 1 robot = 1 agent, spatial Experimental time Define physical parameters suitable for simulation of distributed, self-organizing (micro) systems SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems 29
  30. 30. Modeling / simulation • 2-body motion / • 100-bodies encounter Material Attraction Force Adhesion force DDT 6e-6 nN/nm^2 3.8e-4 nN/nm^2 Carbon 3e-5 nN/nm^2 4e-4 nN/nm^2 Teflon 0 nN/nm^2 1e-4 nN/nm^2SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems 30
  31. 31. Add-on tasks SELFSYS+ • Magnetic particles embedded in SU-8* • DNA coating on microcapsules • Thermal modeling** •  enhance control of assembly/separation a) directionality b) selectivity  c) reversibility Para‐ magnetic capsule T>Tm B=on Mix=on T<Tm B=on Mix=off T>Tm B=off Mix=on * add‐on partner Ch. Hierold ** add‐on partner D. Poulikakos/J. ThomeSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  32. 32. Summary & Outlook MEMS Modeling Fluidic assembly system 100 um Controlled liquid‐releaseHollow capsules Capsule disassembly opening T>Tm B=off Mix=onSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems 32
  33. 33. Loic Jacot‐Descombes Cathrein Hückstädt Jonas Wienen Maurizio Gullo (ETHZ) (EPFL) (CSEM) (EPFL) Didi Xu (ETHZ) Deepak Kumar M. Mastrangeli (ETHZ) (EPFL) V. Nagaiyanallur GMermoud (EPFL) (ETHZ) M/NEMS: J. Brugger (EPFL), Distributed systems: A. Martinoli (EPFL), Surface chemistry: N. Spencer (ETHZ), Nano-Robotics: B. Nelson (ETHZ), Microfluidics: H. Knapp (CSEM), Self assembly: H. Wolf (IBM), RFID: L. Sciboz (icare Sion);  add-on SELFSYS+: Ch: Hierold, D. Poulikakos (ETHZ)SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems 33
  34. 34. Liquid release from micro-capsuleSelf‐assembled Blue ink encapsulated Ink releasedSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems 34
  35. 35. Hollow SU-8 microcapsules Side viewTop view 13 drops… overflowSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  36. 36. Functionalization of SU-8 surface PDDA PSS The charge characteristics are tested by dispersing SiO2 particles Poly(diallyldimethylammonium chloride)(PDDA) – positively charged surface Poly styrene sulfonate (PSS) – negatively charged surfaceSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  37. 37. Microdrop printing of functional material Polymer Microlenses Fakfouri MNS 2009 Luminescent NCs Kim Small 2009 Printing on Hot‐Surface Bio‐Printing Lee APL 2007 Pataky in prepSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  38. 38. Inkjet set-upSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  39. 39. Force Curves / Carbon Coated Tip and Sample Attraction Force movement parameter value tip # curves 500 carbon # positions  100 DI water speed 0.5 Hz sample rest time on sample  0.5 s temperature 22°C Force Curve humidity 33% DI water attractive  snap in Adhesion Force Sample retractive snap outSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  40. 40. Force Curves / DDT Coated Tip and Sample Adhesion Force C A A DDT DI water Fresh tip / sample B B C DI water DDT DDT DI water Displacement of DDT Rearrangement of DDT Sung et al, Appl. Phys.  A 81, 109–114 (2005)SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  41. 41. Modeling SA across scales ~ m ~ cm SelfSys LilySELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems
  42. 42. Summary• Hollow MEMS fabrication• Surfaces: O2 plasma, polymer• In-liquid self-assembly experiments• Field induced assembly• Template induced assembly• Modeling RFID chip Gold bump + + + ––– V ~ antennaSELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems 42

×