Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
FMRI Connectivity Models: GCM & DCM
1
FUNCTIONAL VS EFFECTIVE CONNECTIVIT Y


Func     l     c
    tiona Conne tivity          Effe tiveConne tivity
           ...
PSYCHO-PH YSIOLOGICAL INTERACTION (PPI)

             Condition                                    Condition
             ...
G RANG ER CAUSALIT Y M O D EL

              Time-series
       t-1         t      t+1      t+2

X    1.18      0.20    -0...
D YNAM IC CAUSALIT Y M O D EL

                 DCM: deconvolution of BOLD signal



   Neural Response                   ...
G CM VS D CM


GCM                                      DCM
•BOLD signal                             •Deconvolved BOLD sig...
Upcoming SlideShare
Loading in …5
×

fMRI Connectivity Models: GCM & DCM

2,811 views

Published on

A brief description of terms like: psychophysiological interaction, functional connectivity, effective connectivity, dynamic causality model and granger causality model.

Published in: Education, Technology, Business

fMRI Connectivity Models: GCM & DCM

  1. 1. FMRI Connectivity Models: GCM & DCM 1
  2. 2. FUNCTIONAL VS EFFECTIVE CONNECTIVIT Y Func l c tiona Conne tivity Effe tiveConne tivity c c x x y y •Temporal correlation •Causal Flow 2 2
  3. 3. PSYCHO-PH YSIOLOGICAL INTERACTION (PPI) Condition Condition Condition Y values A B Y values A B Low 2 4 Low 2 2 High 3 5 High 4 7 6 8 7 5 6 4 5 3 A 4 A B B 3 2 2 1 1 0 0 Low High Low High Main Effect of Condition Main Effect of Condition 3 No Interaction Interaction
  4. 4. G RANG ER CAUSALIT Y M O D EL Time-series t-1 t t+1 t+2 X 1.18 0.20 -0.83 -0.31 Y 2.03 -0.02 0.19 -0.49 Z 0.84 0.08 -0.01 -0.39 Prediction of Xt X,Y < X,Y,Z (less errors) Z contains useful information  “Granger-causes” X Z Num. of lagged observations Coefficients of time Errors contribution 4
  5. 5. D YNAM IC CAUSALIT Y M O D EL DCM: deconvolution of BOLD signal Neural Response HRF BOLD Intrinsic time Connections Inputs to regions Regulation Modulatory •Driving Inputs Regulation connections •Modulatory Inputs 5
  6. 6. G CM VS D CM GCM DCM •BOLD signal •Deconvolved BOLD signal •“Data-driven” •“Hypothesis-driven” •mGCM can differentiate b/w direct and •Connections are predefined. No indirect connections differentiation b/w direct and indirect causal connections 6

×