We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
Flash floods in the Saka River (part of the KUSW) struck Muara Dua District with a population of 177.47 people/km2 on May 8th, 2020, due to increased rainfall intensity and land cover changes upstream. Based on this incident, this research will examine hydraulic parameters that directly implications for potential flooding. The rainfall intensity analysis was based on calculations from the Gumbel-Sherman equation in the baseline period 2011-2020. Then the parameters of the runoff coefficient consisting of the slope, land cover, and type of lithology are analyzed by the Hassing method. The results of the rainfall intensity analysis showed that the lowest intensity occurred in August while the highest power occurred in November and April. The runoff coefficient of 53% has implications for peak flow discharge which has an average increase of 11.6%. Flood simulation in KUSW modeled with Hydrologic Engineering Center-River Analysis System (HEC-RAS) software shows 174.4 km2 potential flooding in the five years of the return period and 200 km2 in the ten years of the return period. This analysis model is used as a preventive effort and reduces the negative impact around KUSW.
Flash floods in the Saka River (part of the KUSW) struck Muara Dua District with a population of 177.47 people/km2 on May 8th, 2020, due to increased rainfall intensity and land cover changes upstream. Based on this incident, this research will examine hydraulic parameters that directly implications for potential flooding. The rainfall intensity analysis was based on calculations from the Gumbel-Sherman equation in the baseline period 2011-2020. Then the parameters of the runoff coefficient consisting of the slope, land cover, and type of lithology are analyzed by the Hassing method. The results of the rainfall intensity analysis showed that the lowest intensity occurred in August while the highest power occurred in November and April. The runoff coefficient of 53% has implications for peak flow discharge which has an average increase of 11.6%. Flood simulation in KUSW modeled with Hydrologic Engineering Center-River Analysis System (HEC-RAS) software shows 174.4 km2 potential flooding in the five years of the return period and 200 km2 in the ten years of the return period. This analysis model is used as a preventive effort and reduces the negative impact around KUSW.
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!