Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Cálculo Amostral

83,538 views

Published on

Apresentação sobre cálculo amostral.

Published in: Business, Technology, Education

Cálculo Amostral

  1. 1. AMOSTRAGEM Pesquisa em Marketing Prof César William
  2. 2. POPULAÇÃO E AMOSTRA <ul><li>População/Universo: Todos os indivíduos do campo de interesse da pesquisa, ou seja, é a totalidade das pessoas que potencialmente são alvo de uma pesquisa, </li></ul><ul><li>Amostra: é toda fração (independente de seu tamanho) obtida de uma população. </li></ul>
  3. 3. POPULAÇÃO EM ESTUDO <ul><li>Características similares que podem ser clínicas ou demográficas, definem a população-alvo. É o conjunto maior de pessoas ao redor do mundo para as quais os resultados serão generalizados (ex.: todas os moradores de uma área, ou todas as pessoas com determinada doença). </li></ul>
  4. 4. POPULAÇÃO (N) E AMOSTRA (n) N n 3 n 1 n 2 n 4 Universo amostra amostra amostra amostra
  5. 5. ESTATÍSTICA, PARÂMETRO E ESTIMATIVA <ul><li>Considera-se que o resultado de qualquer cálculo estatístico realizado em um grupo de indivíduos (população ou amostra) gera uma estatística . </li></ul><ul><li>Quando a estatística é obtida em uma população denomina-se parâmetro . </li></ul><ul><li>Quando a estatística é obtida em uma amostra denomina-se estimativa (de parâmetro). </li></ul>
  6. 6. AMOSTRA NÃO PROBABILÍSTICA OU DE CONVENIÊNCIA <ul><li>É uma amostra composta de indivíduos que atendem os critérios de entrada e que são de fácil acesso do investigador. </li></ul><ul><li>Para evitar dificuldades de seleção o ideal é arrolar uma amostra consecutiva . </li></ul><ul><ul><li>Ex.: num estudo sobre empregabilidade arrolar os primeiros 200 alunos que forem matriculados numa faculdade. </li></ul></ul>
  7. 7. AMOSTRA NÃO PROBABILÍSTICA OU DE CONVENIÊNCIA <ul><ul><li>Tem vantagens óbvias em termos de custo e logística. </li></ul></ul><ul><ul><li>A validade desse tipo de amostra depende do pressuposto de que ela representa adequadamente a população alvo. </li></ul></ul>
  8. 8. AMOSTRAS PROBABILÍSTICAS <ul><li>Amostra aleatória simples </li></ul><ul><li>Amostra sistemática </li></ul><ul><li>Amostra aleatória estratificada </li></ul><ul><ul><ul><li>com alocação proporcional </li></ul></ul></ul><ul><ul><ul><li>com alocação igualitária </li></ul></ul></ul><ul><li>Amostra por conglomerados </li></ul><ul><li>Amostra por estágios múltiplos </li></ul>
  9. 9. AMOSTRA ALEATÓRIA SIMPLES <ul><li>É coletada enumerando-se as unidades da população e selecionando-se aleatoriamente um subconjunto. </li></ul><ul><ul><li>Ex.: 20% dos matriculados de uma população de alunos que estiveram empregados no semestre são sorteados para receber visita domiciliar visando avaliar a qualidade de vida atual. </li></ul></ul>
  10. 10. AMOSTRA SISTEMÁTICA <ul><li>Se assemelha à amostragem aleatória simples, porque inicialmente enumera-se as unidades da população. Difere da aleatória simples porque a seleção da amostra é feita por um processo periódico pré-ordenado. </li></ul><ul><ul><li>Ex.: amostra de 20% dos matriculados empregados. Sorteia-se um valor de 1 a 5. Se o sorteado for o 2, incluem-se na amostra o aluno 2, o 7, o 12 e assim por diante de cinco em cinco. </li></ul></ul>
  11. 11. AMOSTRA SISTEMÁTICA <ul><li>As amostras sistemáticas são suscetíveis a erros induzidos por periodicidade naturais da população e permitem ao investigador prever e possivelmente manipular quem entrará na amostra. </li></ul><ul><li>Não oferecem vantagens logísticas em relação às amostras aleatórias simples. </li></ul>
  12. 12. AMOSTRA ALEATÓRIA ESTRATIFICADA <ul><li>divide a população em subgrupos de acordo com determinadas características como sexo ou faixa etária, selecionando uma amostra aleatória de cada um desses estratos. </li></ul><ul><ul><li>Exemplo de amostra estratificada proporcional: a população de alunos empregados é composta por 40% de homens e 60% de mulheres. Separam-se os dois grupos e sorteiam-se 30 mulheres e 20 homens. </li></ul></ul><ul><ul><li>Exemplo de amostra estratificada igualitária: o investigador tem especial interesse na empregabilidade de adolescentes (8% dos casos); separa a população em adultos e adolescentes e sorteia 25 casos de cada grupo. </li></ul></ul>
  13. 13. AMOSTRA POR CONGLOMERADOS <ul><li>É uma amostra aleatória de agrupamentos naturais de indivíduos (conglomerados) na população. </li></ul><ul><li>Tem vantagens logísticas na sua aplicação, porém aumenta a complexidade da análise estatística porque os indivíduos de um mesmo conglomerado tendem a ter uma certa homogeneidade. </li></ul><ul><ul><li>Ex.: num estudo de empregabilidade de alunos do ensino médio, foram sorteadas as salas de aula das escolas de um município e aplicado um questionário a todos os alunos das turmas sorteadas. </li></ul></ul>
  14. 14. AMOSTRA POR ESTÁGIOS MÚLTIPLOS <ul><li>São amostras obtidas por métodos combinados. </li></ul><ul><ul><li>Exemplo: numa pesquisa sobre tabagismo em estudantes de ensino superior foram sorteadas as instituições e depois as turmas (amostra por conglomerados). De cada turma, foram sorteados 20% dos alunos do sexo masculino e 20% dos alunos do sexo feminino (amostra aleatória estratificada). </li></ul></ul>
  15. 15. DETERMINAÇÃO DO TAMANHO DE UMA AMOSTRA INTRODUÇÃO O pesquisador procura tirar conclusões a respeito de um grande número de sujeitos. Por exemplo, ele poderia desejar estudar: os 170.000.000 de cidadãos que constituem a população brasileira. Os 1.000 membros de um sindicato. Os 45.000 estudantes de intercâmbio e assim sucessivamente. Se o pesquisador trabalha com todo o grupo que ele tenta compreender, dizemos que está trabalhando com a POPULAÇÃO.
  16. 16. Fatores que determinam o cálculo
  17. 17. ERRO NÃO AMOSTRAL Ocorrem erros não-amostrais quando: • Os dados amostrais são coletados, registrados ou analisado incorretamente. • Há uma utilização de um instrumento defeituoso durante a realização de mensurações. • Um questionário ou formulário possui questões formuladas de modo tendencioso [Triola, 1999].
  18. 18. ERRO AMOSTRAL Não há dúvida de que uma amostra não representa perfeitamente uma população. Ou seja, a utilização de uma amostra implica na aceitação de uma margem de erro que denominaremos ERRO AMOSTRAL. Erro Amostral é a diferença entre um resultado amostral e o verdadeiro resultado populacional.
  19. 19. ERRO AMOSTRAL o ERRO AMOSTRAL e o TAMANHO DA AMOSTRA seguem sentidos contrários. Quanto maior o tamanho da amostra, menor o erro cometido e vice-versa. E Margem de erro ou ERRO MÁXIMO DE ESTIMATIVA. Identifica a diferença máxima entre a MÉDIA AMOSTRAL ( X ) e a verdadeira MÉDIA POPULACIONAL.
  20. 20. GRAU DE CONFIANÇA Ele estabelece um limite para interpretação dos resultados, ou seja, significa que há uma probabilidade do resultado obtido no levantamento estar correto.   α 95% é um número aceito e mais usado de nível de confiança
  21. 21. GRAU DE CONFIANÇA Tabela de equivalência Percentual Equivalência 68% 1 90% 1,645 95% 1,96 95,5% 2 99% 2,575 99,7% 3
  22. 22. Porcentagem pela qual o fenômeno se verifica É um cálculo estimativo, em que percebe-se dois números. 1º Proporção populacional de indivíduos que pertence a categoria que estamos interessados em estudar = p 2º Proporção populacional de indivíduos que NÃO pertence à categoria que estamos interessados em estudar = q Teremos então -> p.q
  23. 23. FÓRMULAS DE CÁLCULO AMOSTRAL Infinita : n= ∂ 2 .p.q e 2 Finita: n= ∂².p.q .N e².(N-1)+ ∂².p.q
  24. 24. <ul><ul><li>VAMOS À BATALHA </li></ul></ul>A Faculdade de Marketing Facottur deverá fazer uma pesquisa com alunos do Bairro Novo que totalizam 3000 pessoas. A intenção é quantificar a opinião dos alunos em relação aos cursos. Erro=5 e confiança de 95,5% Finita: n= ∂².p.q .N e².(N-1)+ ∂².p.q
  25. 25. (2) 2 *50*50*3000 (5) 2 *(3000-1)+(2) 2 *50*50 30.000.000 74.975+10.000 353,04

×