Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

ICRA 2018 速報

5,516 views

Published on

ICRA 2018 (IEEE International Conference on Robotics and Automation; https://icra2018.org/ )の参加速報を書きました。
この資料には下記の項目が含まれています。
・ICRA 2018の概要
・ICRA 2018での動向や気付き
・ICRAの重要技術/重要論⽂?
・AIST関連の論文
・今後の方針
・論文まとめ(100本あります)

Published in: Technology
  • Be the first to comment

ICRA 2018 速報

  1. 1. ICRA 2018 速報 ⽚岡裕雄,佐藤雄隆 http://hirokatsukataoka.net/
  2. 2. 概要:この資料について • ロボティクスの会議ICRA2018の参加速報 – フォーカス分野:コンピュータビジョン,パターン認識 • 普段は画像/動画を扱っています • CVPR/ICCV/ECCV/BMVCなどの論⽂を読んでいます • ICRA/SIGGRAPH/CHI/UISTなどたまに読みます • cvpaper.challengeというコミュニティも主宰(次ページ) – 経験値:ICRA初投稿,初採択,初参加 – ICRAの歴史/分野についてはコミュニティの⼈の⽅が詳し いので関連リンク内(8ページ⽬)の情報をご参照くださ い – このまとめではひたすら現在のICRAの動向/所感や読んだ 論⽂をピックアップするスタイルにします
  3. 3. ⽚岡の主宰するcvpaper.challenge • 論⽂読破・まとめ・発想・議論・実装・論⽂執筆・(社会実 装)に⾄るまで取り組むCVの今を映す挑戦 – ⼈員:産総研/筑波⼤/電機⼤/慶應⼤/早⼤/東⼤による30名弱 – BraveNewなアイディアをトップ国際会議*に投稿 年間1,000本以上,累計2,500本以上のスライドを作成 本取り組みの結果10本以上の論⽂(含CVPRx2, ICRA, BMVC, ICPRx2, CVPRWx6, ECCVWx2, ICCVW)が採択 8件の招待講演,3件の国内外での受賞 * Google Scholar Top-20にリストアップされている国際会議や論⽂誌 SSII2018での招待インタラクティブ発表より HP, Twitter, SlideShareもご覧ください HP: http://hirokatsukataoka.net/project/cc/index_cvpaperchallenge.html Twitter: @CVpaperChalleng SlideShare: @cvpaperchallenge
  4. 4. 概要:ICRA2018について • Robotics分野のトップ会議! – Google Scholar Subcategory @Robotics • h-5 index: 71 • h-5 median: 95 – 採択率は毎回4割前後 • 2018年は40.6% – ICRAの詳細はロボットコミュニティ⽅が詳しいので説明は 割愛
  5. 5. 概要:ICRA2018について • 会場:The Brisbane Convention & Exhibition Venue – 広い
  6. 6. 概要:ICRA2018について • 会場:The Brisbane Convention & Exhibition Venue – 広い
  7. 7. 概要:ICRA2018について • 会場:The Brisbane Convention & Exhibition Venue – 広い
  8. 8. ICRA報告関連リンク • 会議レポート等はこちらにも載せられています – ICRAの季節(2018/03/30): http://roboticschallenge.blog.fc2.com/ – ロボットの国際会議「ICRA 2008」現地レポート (2008/05/30): https://robot.watch.impress.co.jp/cda/news/2008/05/30/1085.html – ロボット国際会議「ICRA2009」、神⼾で今⽇から開催 (2009年5⽉、⽵内秀樹): http://www.icra2009.org/ – 2012/2014年IEEEロボティクスとオートメーションに関 する国際会議: https://www.jstage.jst.go.jp/article/jrsj/30/9/30_30_869/_pdf/- char/ja https://www.jstage.jst.go.jp/article/jrsj/32/8/32_32_718/_pdf
  9. 9. ICRA 2018の動向・気付き - 今回どんな研究が流⾏っていた? - 海外の研究者は何をしている? - 「動向」や「気付き」をまとめました
  10. 10. ICRA2018の動向・気付き(1/20) – Deep Learning for Robotics Perception • ロボットの認識に⽤いられる深層学習技術 • このワークショップが最も⼈が⼊る⼤ホールにて開催 – Google BrainのリサーチャAnelia Angelovaが講演 – Real-Time Pedestrian Detection with Deep Network Cascades, BMVC 2015等の著者 • ど頭からComputer Visionの画像認識/物体検出アルゴリズム – R-CNN/Fast R-CNN/Faster R-CNN/SSD/YOLO – Feature Pyramid Networks/Focal Loss など派⽣系も紹介 • ポイントクラウド – PointNet ロボットにおいても深層学習を⽤いたビジョン技術が重要視
  11. 11. ICRA2018の動向・気付き(2/20) – Deep Learning for Robotics Perception(続き) – ⾼速な検出,ポイントクラウド処理などに興味? • ロボットでは撮影/認識(ここがビジョン)/操作まで含めるので,各⼯程 できるだけ時短したい – その他,より⾼次な処理についても説明 • Semantic Segmentation • Depth推定 • エッジ検出 – 時系列処理や少量教師についても • LSTM/ConvLSTM • Self-supervision(⾃ら物理的な特徴を学習) ビジョン x ロボットはよりシームレスに! (来て早々これだったんでCVの学会と⾒間違える)
  12. 12. ICRA2018の動向・気付き(3/20) – Amazon Picking Challenge (現在はRobotics Challenge)のディス カッションも続いている • Robust Grasp(ロボットが多様な形状の物体を柔軟に掴むタスク)はかなり昔からある • 3つのWAVE • 1st WAVEは数学的に美しい解き⽅ • 2nd WAVEは⼤規模データベース収集(Googleの80万データ収集はやはり世界的にも衝撃的だった) • そしてNEXT WAVEはコンピュータビジョンの進化 – Dexterity Network (Dex-Net)が良いらしい • 形状が近い物体をネットワークの隣接する位置に配置 • Synthetic LiDAR Image(LiDARによる合成画像⽣成) • 6.7Mのサンプル画像によりどこをつかめば良いかを学習 • Deep Learning from pixels to grasp:
  13. 13. ICRA2018の動向・気付き(4/20) – ビジョンの技術はロボティクス分野で信頼されている • 昔は「ビジョンなんて信⽤ならん」なんて⾔われることも。。 • 今では「⾰新的」とまで⾔われる(特にYOLO/FCNとか) • 物体検出/セマンティックセグメンテーションの上にマニピュレー ションや⾃動運転を実装している • もちろん,アルゴリズムそのものの改良も認めてくれる 今後もさらにCV技術を取り⼊れる雰囲気
  14. 14. ICRA2018の動向・気付き(5/20) – ロボットコミュニティは⽇本の研究者が元気!!!! • (全てがそうではないが)1セッションにつき1発表は⽇本⼈の名 前が⼊っていると感じるくらい • このように元気が良いコミュニティこそ,もっと取り上げられて欲 しい – 学術界全体の活性化にも繋がる? – やはり⽇本⼈としては気持ちが良い – 盛り上げて来た諸先⽣⽅の努⼒あってこそ
  15. 15. ICRA2018の動向・気付き(6/20) – ICRA(ロボティクス)の論⽂は何をしているか概要レベル での把握がしやすい • 詳細は難しいことをしているが,⾒せ⽅が上⼿ • 「ビデオ」や「動くもの」を重視しているような雰囲気がある • 査読時にもビデオをかなり⾒ているようなコメントがある上に,提 出時にビデオはオプションではなくMUSTアイテム
  16. 16. ICRA2018の動向・気付き(7/20) – 最初のトーク:Rodney Brooks(iRobot) • おなじみRoombaの会社の⼈ – 3つのチャレンジ • 少⼦⾼齢化 • 気候変動 • 産業化 オープンチャレンジはまだまだある!
  17. 17. ICRA2018の動向・気付き(8/20) – 機械学習は⾮常に注⽬されている分野 – Angela Schoellig(Univ. of Toronto)のトーク • https://scholar.google.com/citations?user=QMfeRz0AAAAJ&hl=ja • ⾃動運転などでPracticalな機械学習アルゴリズムを考案 • Planning/Control/{Single-, Multi-}task Learning/Multi-task, Multi-robot Learning/Learning with Safety Guarantees – MIT Tech Reviewʻs Innovators Under 35にも選出 • 社会的にも評価される • https://www.technologyreview.com/lists/innovators-under- 35/2017/pioneer/angela-schoellig/ • https://www.youtube.com/watch?v=sBBAb04OFc8
  18. 18. ICRA2018の動向・気付き(9/20) – ロボットでは未だ「ディープラーニング使った感」が残る • タイトルに “Deep Neural Network”など⼊っている論⽂が散⾒ • ロボティクスではコンピュータビジョンよりも多様性があり, ディープラーニングが広がっていく感じは⻑く残るのでは? • 認識だけでなく,コントロールにも広く使っているので多様性があ るように感じる? ML/CVなどの⼈は今後ロボットの研究もするべき?
  19. 19. ICRA2018の動向・気付き(10/20) – ⼝頭発表をなくしてポスターで発表するなどドラスティッ クに変更 • ⼝頭発表をなくすのはロボティクスの⼈からしても⼤胆な改⾰ • ポスター
  20. 20. ICRA2018の動向・気付き(11/20) – Learning to Learn(Meta-learning) • Pieter Abbeel(UC Berkeley) • 学習することを学習する • 機械学習分野(特にNIPS)の⽂脈にて最近流⾏ • NIPS 2017ではチュートリアル/ワークショップが開かれてまさに 機械学習でこれから流⾏ろうとしている
  21. 21. ICRA2018の動向・気付き(12/20) – UC Berkeleyのチーム強すぎないですか? • NIPS/ICML等でも活躍している機械学習のプロフェッショナルがロ ボットを動かせるようになってる • End-to-End学習/転移学習/マルチタスク学習/など基本的な技術を ⾼いレベルで実現 • 模倣学習/メタ学習というMLでも最先端を作っている • マニピュレーション/UAVなどロボット操作の技術にも⻑けており, 他の研究チームには出せない強みを獲得? • Pieter Abbeel: 8ICRA(ICRA2018に8本採択) • Sergey Levine: 9ICRA • Ken Goldberg: 5ICRA • もちろん数本は重複あり • BAIR(バークレーの⼈⼯知能研究所)からは何本通っているのか ICRAは他分野の知⾒を実装することを許容してくれる
  22. 22. ICRA2018の動向・気付き(13/20) – Bridging the gap between robotics and AI • Sami Haddadin(TUM) • ざっくりいうといわゆるAI関連の技術でマニピュレーションはより 良くなる • e.g. 部品を組み⽴てる操作,⼈間を補助する操作 • ⼈間によるインタラクション/他のロボットの操作による転移学習
  23. 23. ICRA2018の動向・気付き(14/20) – ⾃動運転/ドローンの主戦場 • CVの国際会議でも⼗分多いと思っていたがやはりロボティクスの 分野だけあり,それの倍以上多い感じがする • CVが技術的な要素を含めないと論⽂にならないのに対して,実装 の⼯夫点のようなところも評価される • 「実装の⼯夫点」については全体的にそう(評価される傾向にあ る)かも! ICRAは実装⾯で頑張った,が認められる?
  24. 24. ICRA2018の動向・気付き(15/20) – SLAMもCVより多くの論⽂数が採択されている • SLAM; Simultaneous Loalization and Mapping/Visual SLAM • 移動するロボット等を扱う分野だけありより⾃⼰位置推定や3次元 地図のマッピングに関する問題設定が重要視 • SLAMに関するベンチマークの提案も出てくる出てくる
  25. 25. ICRA2018の動向・気付き(16/20) – ポスター発表して感じたこと • 中にはすでにコンピュータビジョンの⼈が多くいる(質問が同業 者) • 中にはCVの有名⼈やCVPR/ICCVで発表している⼈も⾒かける • 分野ごとに分かれていて,セッションごとに⼈の層が異なる感じ
  26. 26. ICRA2018の動向・気付き(17/20) – 30/20/10年前の表彰 • それぞれの年にICRAで発表された中でもっともインパクトのあっ た,世に影響を与えた発表 • 30年前(1988),20年前(1998)の論⽂の表彰(ベスト)がい ずれも⽇本初の論⽂であった • 特に20年前の論⽂はホンダ ASIMOの開発論⽂
  27. 27. ICRA2018の動向・気付き(18/20) • Best Papers – Social Attention: Modeling Attention in Human Crowds (Best Paper in Cognitive Robots) – Interactively Picking Real-World Objects with Unconstrained Spoken Language Instructions (Best Paper in Human-Robot Interaction) – A lightweight and efficient portable soft exosuit for paretic ankle assistance in walking after stroke (Best Paper in Medial Robotics) – Pairwise consistent measurement set maximization for robust multi-robot map merging (Best Paper in Multi-Robot Systems)
  28. 28. ICRA2018の動向・気付き(19/20) • Best Papers – Decentralized adaptive control for collaborative manipulation (Best Paper in Robot Manipulation) – Optimization beyond the convolution: generalizing spatial relations with end-to-end metric learning (Best Paper in Robotic Vision) – PRM-RL: Long-range Robotic navigation tasks by combining reinforcement learning and sampling- based planning (Best Paper in Service Robotics) – Design, modeling and control of aerial robot dragon: Dual-Rotor Embedded Multilink Robot with the Ability of Multi-Degree-of-Freedom Aerial Transformation (Best Paper in UAV)
  29. 29. ICRA2018の動向・気付き(20/20) • Best Papers – Design of an autonomous racecar: perception, state estimation and system integration (Best Student Paper Award) – Compact design of a hydraulic driving robot for intra- operative MRI-guided bilateral stereotactic neurosurgery (Best Paper) – 最初の⽅,少し聞き逃してしまいました。。
  30. 30. ICRAの重要技術/重要論⽂? - ICRAで現在使われている(使われそう)と感 じたCVの重要技術を紹介 - すぐに使えるコードへのリンクも追加
  31. 31. ICRAの重要技術/重要論⽂(1/6) • Dex-Net – いかに物体を把持するかをネットワークで実⾏ – Dex-Net v1 ~ v4まで出ている – コード公開済み https://berkeleyautomation.github.io/dex-net/
  32. 32. ICRAの重要技術/重要論⽂(2/6) • R-CNN/Fast R-CNN/Faster R-CNN – CV分野ではおなじみ物体検出技術 – 物体候補領域のピックアップと物体識別により物体検出を 実施 – Faster R-CNNでは全ての学習をEnd-to-Endに – Faster R-CNN (python): https://github.com/rbgirshick/py-faster-rcnn – Faster R-CNN (matlab): https://github.com/ShaoqingRen/faster_rcnn – Detectron (Caffe2): https://github.com/facebookresearch/Detectron
  33. 33. ICRAの重要技術/重要論⽂(3/6) • SSD/YOLO – 物体検出技術であるが,ワンショットで物体尤度と位置を 返却 – とにかく⾼速に動作 – SSD: https://github.com/weiliu89/caffe/tree/ssd – YOLO: https://pjreddie.com/darknet/yolo/
  34. 34. ICRAの重要技術/重要論⽂(4/6) • Mask R-CNN – インスタンスセグメンテーション – 物体検出とセグメンテーションを同時実⾏ – セグメンテーション部分をキーポイント検出に置き換える ことも可能 – Detectron: https://github.com/facebookresearch/Detectron
  35. 35. ICRAの重要技術/重要論⽂(5/6) • FCN/U-Net/SegNet/PSPNet – セマンティックセグメンテーション⼿法 – 畳み込み(Encoder)とアップサンプリング(Decoder) により特徴の抽象化と意味ラベルへの変換を実⾏ – FCN: https://github.com/shelhamer/fcn.berkeleyvision.org – U-Net: https://github.com/zhixuhao/unet – SegNet: https://github.com/alexgkendall/caffe-segnet – PSPNet: https://github.com/hszhao/PSPNet
  36. 36. ICRAの重要技術/重要論⽂(6/6) • 3D Convolution – 時系列の畳み込みはこれから重要になる – ⾏動,ジェスチャなどを捉える3D-ResNetsは⾼精度な時 系列CNNモデル – 3D-ResNets-PyTorch: https://github.com/kenshohara/3D-ResNets-PyTorch
  37. 37. 産総研(AIST)の論⽂ - 産総研の⽅が著者に含まれていたらカウントしています
  38. 38. 産総研(AIST)の論⽂⼀覧 – Akihiko Murai, Mitsunori Tada, “Multilayered Kinodynamics Simulation for Detailed Whole-body Motion Generation and Analysis” – Asako Kanezaki, Jirou Nitta, Yoko Sasaki, “GOSELO: Goal-Directed Obstacle and Self-Location Map for Robot Navigation Using Reactive Neural Networks” – Hirokatsu Kataoka, Teppei Suzuki, Shoko Oikawa, Yasuhiro Matsui, Yutaka Satoh, “Drive Video Analysis for the Detection of Traffic Near- Miss Incidents” – Cota Nabeshima, Ko Ayusawa, Conrad Hochberg, Eiichi Yoshida, “Standard Performance Test of Wearable Robots for Lumber Support” – Mehdi Benallegue, Pierre Gergondet, Herve Audren, Alexis Mifsud, Mitsuharu Morisawa, Florent Lamiraux, Abderrahmane Kheddar, Fumio Kanehiro, “Model-based External Force/Moment Estimation for Humanoid Robots with No Torque Measurement”
  39. 39. 産総研(AIST)の論⽂(1/5)
  40. 40. 産総研(AIST)の論⽂(2/5)
  41. 41. 産総研(AIST)の論⽂(3/5)
  42. 42. 産総研(AIST)の論⽂(4/5)
  43. 43. 産総研(AIST)の論⽂(5/5)
  44. 44. 今後の⽅針 - では,どうすればよいか?
  45. 45. 今後の⽅針?(1/4) • Language and Vision(⾔語と視覚)はロボ ティクスの次なるウェーブか? – ロボットこそ,(座標等を提⽰するのみでなく)⼈間の⾔ 葉でインタラクションをして欲しいはず – コンピュータビジョンでは2015年くらいから右肩上がりに 本数が増えて来た • Image Captioning(2015〜) • Visual Question Answering(2016〜) • Visual Reasoning(2018〜) • (注)⻄暦は初提案された時期ではなく流⾏り始めたと感じた時 – ということを書いていたらPFNの論⽂がHRIのベストペー パーを獲得した!
  46. 46. 今後の⽅針?(2/4) • 敵対的学習(GAN)もこれから流⾏る? – 画像⽣成,識別器強化,ドメイン変換,学習画像の拡張な どアイディア次第ではGANのテクニックがロボティクスタ スクにおいても使えるのではないか – ロボティクスでは「まだGANてどうなの?」という段階か – すでに使っている論⽂もあるが少数 • GraspGAN
  47. 47. 今後の⽅針?(3/4) • 会場で密にディスカッションを⾏った – が,ここからは秘密です – 直接⽚岡までお声がけください!
  48. 48. 今後の⽅針?(4/4) • ロボティクスxコンピュータビジョンの共同研 究はこれからも増える! – 勢いある両者を統合して相乗効果 – もちろん,分野間がシームレスになりつつあるので,お互 いの論⽂を引き合って盛り上げていく – ロボティクスの皆さんへ↓ 「ディスカッションしましょう!」 コラボレータも募集中!詳細は下のリンクから http://hirokatsukataoka.net/project/cc/recruit.html
  49. 49. 以下、まとめ論⽂集 - 100本あります - 全て⽚岡がICRA期間中に読んだ論⽂です - 速読を⾏なっており詳細には触れていない論 ⽂も多く含まれます
  50. 50. • K. Bousmalis, et al. “Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping”, in ICRA 2018. – ロボットハンドのタスクでドメイン変換をしやすくする – 合成画像をリアルに近くなるように変換(左=>右にする) – 提案のGraspGANにより,ラベル付けなしで939,777枚のDBを作成 【1】(PaperID: 1272)
  51. 51. • A. Zeng, et al. “Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching”, in ICRA 2018. – Amazon Robotics Challengeにおける,MIT-Princetonチームの技術 – Dex-Net 2.0を超えた3.0がこの論⽂? – カメラの設置,複数の掴み⽅(Suction down, Suction side, Grasp Down, Flush grasp), 新規の学習法なども⾔及されている ハンド/アフォーダンス/新規学習法などObject-agnosticな把持法を考案 【2】(PaperID: 1502) http://arc.cs.princeton.edu https://youtu.be/6fG7zwGfIkI
  52. 52. • P. Liang, et al. “Planar Object Tracking in the Wild”, in ICRA 2018. – 平⾯(Planar)トラッキングのデータベースとそのベンチマーク – 従来はラボ環境(下図のMetaio/TMT/PTD)だが,⼀般環境を想定(in the wild) – 著名なアルゴリズムは実装して⽐較評価 【3】(PaperID: 78)
  53. 53. • F. Codevilla, et al. “End-to-End Driving via Conditional Imitation Learning”, in ICRA 2018. – ⾃動運転を模倣学習により⾏う⼿法を提案 – 実空間での学習結果をヴァーチャルな空間での⾃動運転にて再現する 【4】(PaperID: 97)
  54. 54. • I. B. Hagen, et al. “MPC-based Collision Avoidance Strategy for Existing Marine Vessel Guidance Systems”, in ICRA 2018. – 船舶のガイドと操作による衝突防⽌システムを提案 – Model Predictive Control (MPC)による遷移コスト計算を実施 – 下に全体フロー図や衝突防⽌のルールを⽰す 【5】(PaperID: 102)
  55. 55. • S. Nobili, et al. “Predicting Alignment Risk to Prevent Localization Failure”, in ICRA 2018. – ポイントクラウドによるSLAMの研究 – ローカライズの失敗を事前推定して予防 – 外的にポイントクラウドを解析してレジストレーションのための事前 知識とする 【6】(PaperID: 108)
  56. 56. • N. Mehta, et al. “Robust and Fast 3D Scan Alignment using Mutual Information”, in ICRA 2018. – 相互情報を⽤いて6DOFの点群レジストレーション(剛体)を⾏う – スキャンした点群に対し相互情報を⽤いアラインメント(左下図) – 右下図はアラインメントの効果 – 2種のDBにて既存の点群ベース⼿法(point2point/point2distribution)よりも良 好な制度を実現 【7】(PaperID: 114)
  57. 57. • H. Liu, et al. “Interactive Robot Knowledge Patching using Augmented Reality”, in ICRA 2018. – ARによるロボット操作の遠隔⽀援を⾏う – 例として複数のボトルをあらかじめ学習してある程度対応しておき, さらに⼈間の補助により道のボトルを開ける(操作する)ことが可能 – Temporal-And-Or-Graph (T-AOG)により⼈間とロボットがインタラ クティブに学習するモデルを提供 【8】(PaperID: 123)
  58. 58. • D. Schlegel, et al. “ProSLAM: Graph SLAM from a Programmerʼs Perspective”, in ICRA 2018. – シンプルさを念頭に置いた軽量実装であるProSLAMを提案 – 軽量であるのみならず,実装や理解が容易であるという特徴も持つ – 左下図はKITTIに対するSLAMの処理例であり,⾼精度である – 右下図は全体のフロー図を⽰す 【9】(PaperID: 141)
  59. 59. • J. Butepage, et al. “Anticipating many futures: Online human motion prediction and generation for human-robot interaction”, in ICRA 2018. – ボディトラッキングから次に移動する動線を予測 – 左下図⻩線のように動線予測を実施し,約1.6秒先を⾒通せる – Variational Autoencoder(VAE)を⽤いて複数の予測を⽣成 【10】(PaperID: 148)
  60. 60. • R. J. Griffin, et al. “Strainght-Leg Walking Through Underconstrained Whole-Body Control”, in ICRA 2018. – アトラスの⼆⾜歩⾏に関する論⽂ – 全⾝をコントロールした状態でより「直⽴状態」を保つように制御 • これが⾮常に難しい?(普段は⾜をやや屈ませているように⾒える) – 実環境(ロボットを動作)における実験,シミュレーションにおける 実験の両者を⾏った 【11】(PaperID: 168)
  61. 61. • W. He, et al. “Deep Neural Networks for Multiple Speaker Detection and Localization”, in ICRA 2018. – HRI(Human-Robot Interaction)の複数⾳源特定のために深層学習を⽤いた – ロボットはPepperを適⽤し,左下図のような環境で実験を実⾏ – 本論⽂での提案は出⼒がLikelihoodで出るもので,従来のSpectrum ベースのアプローチよりも精度が良かった 【12】(PaperID: 192)
  62. 62. • L. Zhao, et al. “Robot Composite Learning and the Nunchaku Flipping Challenge”, in ICRA 2018. – ヌンチャクを振り回すチャレンジ”Nunchaku Flipping Challenge” – ロボットに⼈間ライクな技術を伝承するRobot Learning from human demonstration (LfD) 【13】(PaperID: 194)
  63. 63. • C. Rauch, et al. “Visual Articulated Tracking in the Presense of Occlusions”, in ICRA 2018. – ロボットが把持操作している際の物体トラッキングとオクルージョン – ICPアルゴリズムでは⼀度失敗するとリカバーするのが困難であるため, オクルージョンを理解しながらトラッキング&把持を実施 【14】(PaperID: 197)
  64. 64. • Joshua Owoyemi, et al. “Spatiotemporal Learning of Dynamic Gestures from 3D Point Cloud Data”, in ICRA 2018. – 3D点群に対してEnd-to-Endな時系列ジェスチャ学習を⾏う枠組み – 点群をDenseOccupancyGridに投影して3DConv. 【15】(PaperID: 223)
  65. 65. • D. Almeida, et al. “Cooperative Manipulation and Identification of a 2-DOF Articulated Object by a Dual-Arm Robot”, in ICRA 2018. – 双腕ロボットのマニピュレーションにおける2DOFの物体把持 – 物体により拘束された接地や動きの制約を同時最適化 【16】(PaperID: 244)
  66. 66. • A. Milioto, et al. “Real-time Semantic Segmentation of Crop and Weed for Precision Agriculture Robots Leveraging Background Knowledge in CNNs”, in ICRA 2018. – 農業機器から穀物や雑草を撮影しセマンティックセグメンテーション – SegNet/Enetをベースとした構造でセグメンテーションを⾏う 【17】(PaperID: 252)
  67. 67. • D. Droroeschel, et al. “Efficient Continuous-time SLAM for 3D Lidar-based Online Mapping”, in ICRA 2018. – マップのRefinementをオンラインで⾏うSLAMを提案 – ワンタイムでスキャンされたローカルな点群はSub-graph表現され, グラフ最適化 【18】(PaperID: 267)
  68. 68. • M. Schwarz, et al. “Fast Object Learning and Dual-arm Coordination for Cluttered Stowing, Picking and Packing”, in ICRA 2018. – Amazon Robotics Challenge (ARC)のNimbRoチームの技術紹介 – 転移学習により新規物体を検出する技術に学術的新規性あり – セマンティックセグメンテーション/双腕ロボットを⽤いている 【19】(PaperID: 270)
  69. 69. • B.-J. Lee, et al. “Robust Human Following by Deep Bayesian Trajectory Prediction for Home Service Robots”, in ICRA 2018. – ⼈間追尾型の補助/アシストを⾏うサービスロボットの提案 – RGBDを⼊⼒としてベイジアン/深層学習により動線予測 – RoboCup@Home 2017のコンペティションに参加 【20】(PaperID: 272)
  70. 70. • F. Blochliger, et al. “Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps”, in ICRA 2018. – Path Planningを楽にするためのTopomapを提案 – vSLAMによる点群(左下図a)をトポロジカルなマップ上(左下図b) に投影 【21】(PaperID: 277)
  71. 71. • L. v. Stumberg, et al. “Direct Sparse Visual-Inertial Odometry using Dynamic Marginalization”, in ICRA 2018. – カメラ姿勢とシーンのジオメトリを同時推定するVisual Inertial Odometryを提案 – 環境が変化しても対応するDynamic Marginalizationを提案 【22】(PaperID: 308)
  72. 72. • Z. Shao, et al. “A Hierarchical Model for Action Recognition Based on Body Parts”, in ICRA 2018. – ⼈物の関節情報を部分的かつ階層的に分割した状態で特徴記述,⼈物 ⾏動認識を実⾏ – 関節情報の相対的な回転/⾓度を記録するHierarchical Rotation and Relative Velocity (RRV)を提案,Fisher Vectorsと組み合わせて識別 【23】(PaperID: 313)
  73. 73. • S. Elliott, et al. “Robotic Cleaning through Dirt Rearrangement Planning with Learned Transition Models”, in ICRA 2018. – 塵取り(Dirt Rearrangement)を⾏うロボット – ロボット動作の前後で観測してヒューリスティックに⽬的を達成する 【24】(PaperID: 317)
  74. 74. • Y. Qian, et al. “Pedestrian Feature Generation in Fish-Eye Images via Adversary”, in ICRA 2018. – ⿂眼カメラ画像をAdversarialに作成してしまう問題設定 – 歩⾏者の特徴量を⿂眼カメラで撮影した雰囲気に変換するFish-eye Spatial Transformer Network (FSTN)を提案 【25】(PaperID: 330)
  75. 75. • B. D. Corte, et al. “A General Framework for Flexible Multi-Cue Photometric Point Cloud Registration”, in ICRA 2018. – 点群のレジストレーションを⼀般化するためにMulti-cue (intensity/depth/normals)を使⽤ – コードをC++にて公開予定 【26】(PaperID: 362)
  76. 76. • S.-J. Li, et al. “Direct Line Guidance Odometry”, in ICRA 2018. – 対応点マッチングによるオドメトリに検出された直線を特徴として補 助的に⽤いることで計算コストを削減しつつVisual Odometryの精度 を向上 【27】(PaperID: 366)
  77. 77. • O. Mendez, et al. “SeDAR – Semantic Detection and Ranging: Humans can localise without LiDAR, can robots?”, in ICRA 2018. – ⼈間がLiDARなど外的に距離情報なしでも実空間を動き回り物体を操 作できる⼀⽅でロボットはどうなのか?を検証 – セマンティック情報をいかに有効活⽤してFloorplanを作成するか試⾏ 【28】(PaperID: 391)
  78. 78. • A. Cruz, et al. “Negotiating with a robot: Analysis of Regulatory Focus Behavior”, in ICRA 2018. – 介護⼠や⾼齢者/家族に向けネゴシエーションをするロボの提案 – “Regulatory Focus”と呼ばれる⼼理学の理論を応⽤ – Promotion/Prevention/Neutral Behaviorに対して実験 【29】(PaperID: 407)
  79. 79. • A. Fregin, et al. “The DriveU Traffic Light Dataset: Introduction and Comparison with Existing Datasets”, in ICRA 2018. – ステレオカメラにより撮影された画像と広⾓カメラ画像,距離画像の 含まれたデータセットを提案 – アノテーションは11都市/異なる天候から230,000が付けられていて, それは明確なルールのもとでラベルづけされた 【30】(PaperID: 438)
  80. 80. • C. Park, et al. “Elastic LiDAR Fusion: Dense Map-Centric Continuous-Time SLAM”, in ICRA 2018. – DenseSLAMにおいてリアルタイムかつ⻑期のマップを作成 – 確率的な表⾯要素(Probabilistic Surface Element)を⽤いて DenseMapの不確定性を低減する – 全体としての整合性を,グローバルなバッチの動線最適化なしに, LiDARノイズを除去しながら実施することに成功 【31】(PaperID: 439)
  81. 81. • C. Rubino, et al. “Practical Motion Segmentation for Urban Street View Scenes”, in ICRA 2018. – 動画像中から異なるモーションの物体を切り分ける(Motion Segmentation)という問題設定 – ⾃動⾞ナビゲーションという⽂脈における制約を⽤いてカメラ動作/物 体の情報を使⽤して同問題を⾼精度化 【32】(PaperID: 452)
  82. 82. • G. Wan, et al. “Robust and Precise Vehicle Localization based on Multi-sensor Fusion in Diverse City Scenes”, in ICRA 2018. – センチメートルオーダー (5~10cm)で⾃動⾞の位置特定を実⾏ – 左下図のようにGNSS/LiDAR/IMUを同期 – 郊外/ダウンタウン/⾼速道路/トンネルなど様々かつチャレンジングな 環境にて実験を⾏なった 【33】(PaperID: 470)
  83. 83. • V. Vatsal, et al. “Design and Analysis of a Wearable Robotic Forearm”, in ICRA 2018. – ウェアラブルなロボットの前腕部をデザイン/解析する⽅法 – 実際に⼈間が装着・⼈物間の操作性・把持を確認により解析 【34】(PaperID: 471)
  84. 84. • L. Sun, et al. “3DOF Pedestrian Trajectory Prediction Learned from Long-Term Autonomous Mobile Robot Deployment Data”, in ICRA 2018. – LiDARによる点群からの3DOF(3つのパラメータ; xyt座標?を推測) ⼈物検出であり,約1.2秒先の歩⾏者の経路も予測する – Seq2Sep/Encoder-DecoderなLSTM(再帰的ネットの⼀種)を学習 – CareHomeにおける15km以上の⼈物の動線を⽤いて検証を⾏なった 【35】(PaperID: 501)
  85. 85. • X. Han, et al. “Fully Convolutional Neural Networks for Road Detection with Multiple Cues Integration”, in ICRA 2018. – Multi-level特徴を⽤いた道路⾯のセグメンテーション – LiDARなどによるHightImg/画像勾配/ポジションマップを⽤いる – 学習済みResNet-101をベースにして特徴学習 【36】(PaperID: 503)
  86. 86. • B. Mariusz, et al. “VisualBackProp: efficient visualization of CNNs for autonomous driving”, in ICRA 2018. – 認識の際にどの領域が寄与したかを可視化するVisualBackPropを提案 – アルゴリズムをデバッギングしやすくして学習がどの程度進んだか, 余計な領域を⾒ていないかなどを確認可能 【37】(PaperID: 515)
  87. 87. • X. Zhou, et al. “Human Motion Capture Using a Drone”, in ICRA 2018. – ドローンから⼈物をRGBのみで撮影して3次元姿勢推定を⾏う – 姿勢のバリエーションが変わってもロバストな推定を実現 – こちらのページでより詳細な説明がある https://github.com/daniilidis-group/drocap 【38】(PaperID: 520)
  88. 88. • Y. Liu, et al. “Imitation from Observation: Learning to Imitate Behaviors from Raw Video via Context Translation”, in ICRA 2018. – あるタスクを⾏うエキスパートから知識を学びロボットで実現する 「模倣学習(Imitation Learning)」という問題設定の研究 – エキスパートで学習してロボットで実⾏するためのContext Translation Modelを提案 【39】(PaperID: 524)
  89. 89. • T. T. Pham, et al. “SceneCut: Joint Geometric and Object Segmentation for Indoor Scenes”, in ICRA 2018. – RGBDを⼊⼒として,未知物体や⾮物体表⾯を同時発⾒する枠組みであ るSceneCutを提案 – 左下はMask-RCNN/RefineNetとの⽐較,提案法はクラスによらず物 体表⾯を検出可能である(RetinaNetは表⾯の切り分けが困難で, Mask RCNNは新規物体を検出できない) 【40】(PaperID: 607)
  90. 90. • J. Hatori, et al. “Interactively Picking Real-World Objects with Unconstrained Spoken Language Instructions”, in ICRA 2018. – ⾔葉によるインストラクションで物体を操作するロボットの提案 – 物体検出/会話・⾃然⾔語認識/ロボット操作のモジュールを含む – PFNの論⽂で,YouTube動画も公開されている https://www.youtube.com/watch?v=_Uyv1XIUqhk&feature=youtu.be 【41】(PaperID: 638)Best Paper in Human-Robot Interaction
  91. 91. • S. Verma, et al. “Vehicle Detection, Tracking and Behavior Analysis in Urban Driving Environments using Road Context”, in ICRA 2018. – 2DLiDARと単眼カメラを⼊⼒としたリアルタイム⾞両検出を提案 – YOLOによるロバスト⾞両検出/LiDARによるレンジ推定/マップによる 事前知識を⽤いたコンテキスト認識を⾏い,⾞両の状態推定 【42】(PaperID: 639)
  92. 92. • T.-T. Do, et al. “AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection”, in ICRA 2018. – 物体の検出と機能領域推定を同時に達成するAffordanceNetの提案 – ベースアルゴリズムとしてMask R-CNNを適⽤,物体検出とアフォー ダンスラベルを学習 – アフォーダンスラベルが付与されたデータセットやAffordanceNetの コードも公開 【43】(PaperID: 645)
  93. 93. • E. Heng, et al. “Object-Centric Approach to Prediction and Labeling of Manipulation Tasks”, in ICRA 2018. – 物体を中⼼にしてラベル付け,⼈物のマニピュレーションを予測 – Low-levelなセンサデータからHigh-levelな⼈物⾏動を推測 – Teaching phase(グラフ⽣成)/Online action recognition(観測を ⽣成したグラフにマッピング)の2ステップから構成される 【44】(PaperID: 674)
  94. 94. • A. Sena, et al. “Teaching Human Teachers to Teach Robot Learners”, in ICRA 2018. – ロボットに対して適切に教⽰できるように⼈間側をガイド – インタラクティブに,クリアに教⽰できるようにする 【45】(PaperID: 718)
  95. 95. • P. Kaiser, et al. “Affordance-Based Multi-Contact Whole-Body Pose Sequence Planning for Humanoid Robots in Unknown Environments”, in ICRA 2018. – アフォーダンスによる多点接地ヒューマノイドARMAR-4を提案,これ により2⾜だけでなく⼿領域によるサポートが可能 【46】(PaperID: 723)
  96. 96. • J. Jeong, et al. “Complex Urban LiDAR Data Set”, in ICRA 2018. – 都市部における「より複雑なLiDARデータセット」を提案 – 現在までのLiDARデータは郊外で撮影されてきたが,都市部の特徴を 捉えるためのユニークなデータセットになると主張 【47】(PaperID: 774)
  97. 97. • J. Li, et al. “Slip Detection with Combined Tactile and Visual Information”, in ICRA 2018. – マニピュレーションを補助するためのスリップ検出 – スリップ検出にDNNを⽤いる; 異なる画像を畳み込み,特徴統合,全 結合層を通過して2段階のLSTMを実施 【48】(PaperID: 788)
  98. 98. • S. Lowry, et al. “LOGOS: Local geometric support for high-outlier spatial verification”, in ICRA 2018. – 対応点マッチングの中から正しいペアのみを選択(spatial verification)する LOGOSを提案 – Outlier除去においてRANSACを超える精度を達成 【49】(PaperID: 850)
  99. 99. • B. Bodin, et al. “SKAMBench2: Multi-Objective Head-to-Head Benchmarking for Visual SLAM”, in ICRA 2018. – 現在/将来のSLAMシステムを評価する枠組みを提供 – 下図がSLAMを評価する枠組みであるSLAMBench2である 【50】(PaperID: 865)
  100. 100. • R. Rahmatizadeh, et al. “Vision-Based Multi-Task Manipulation for Inexpensive Robots Using End-to-End Learning from Demonstration”, in ICRA 2018. – ロボットのより複雑なピッキング/モノを置く動作を扱い,マルチタス クに学習する枠組みを提案 – 操作にはLSTMを採⽤,⼊⼒画像を再構成するためにVAE-GANを適⽤ 【51】(PaperID: 866)
  101. 101. • Y.-S. Shin, et al. “Direct Visual SLAM using Sparse Depth for Camera-LiDAR System”, in ICRA 2018. – RGBとLiDARを組み合わせたセンサを提案 – センサの姿勢推定や3次元環境を同時に推定することができる – 結果的に下図Cのようなマップを構築 【52】(PaperID: 870)
  102. 102. • Q. Bateux, et al. “Training Deep Neural Networks for Visual Servoing”, in ICRA 2018. – DNNベース,⾼精度かつロバストなリアルタイム6DOFの VisualServoingを提案 – 操作システムは下記に⽰されるアーキテクチャである 【53】(PaperID: 906)
  103. 103. • E. Stenborg, et al. “Long-term Visual Localization using Semantically Segmented Images”, in ICRA 2018. – 季節レベルで⻑期にわたり同じ場所を撮影,セマンティックセグメン テーションによりこのような変化があっても適切にナビする提案 – 3次元マップに投影することで⻑期にわたり変化しても適切な地図を作 成できる 【54】(PaperID: 966)
  104. 104. • M. Gualiteri, et al. “Pick and Place Without Geometric Object Models”, in ICRA 2018. – Pick-Place Problem:ロボットは把持と置くことを,物体に対する事 前知識なしに推定・実⾏しなければならない – 強化学習を⾏うことで物体の姿勢や把持位置を獲得していく 【55】(PaperID: 982)
  105. 105. • M. Wulfmeier, et al. “Incremental Adversarial Domain Adaptation for Continually Changing Environments”, in ICRA 2018. – 時刻変化に対するドメイン変換をAdversarialに学習 – 朝〜昼〜夜の変化をドメインの変化と捉えていつでも対応できるよう に学習 【56】(PaperID: 984)
  106. 106. • A. Vemula, et al. “Social Attention: Modeling Attention in Human Crowds”, in ICRA 2018. – ロボットが⼈間の集団をナビゲートするときのサポートを考察 – Social Attentionと呼ばれる,個⼈間の相対的な重要性を考慮した 動線予測モデルを提案 – 既存の混雑状況時のデータセットを⽤いて評価 【57】(PaperID: 815) Best Paper in Cognitive Robots
  107. 107. • J. Bae, et al. “A lightweight and efficient portable soft exosuit for paretic ankle assistance in walking after stroke”, in ICRA 2018. – 半⾝⿇痺であったとしても歩⾏をサポートすることができるスーツ の開発 – 従来ではOffboard式であったが,アクチュエータも含めて完全に 装着可能である 【58】(PaperID: 944) Best Paper in Medial Robotics
  108. 108. • J. G. Mangelson, et al. “Pairwise Consistent Measurement Set Maximization for Robust Multi-robot Map Merging”, in ICRA 2018. – ロボット間の整合性を保つ(ループクロージャを選択的に実施す る)ためのPairwise Consistency Maximization (PCM)を提案 – SLAMを複数のロボットにて⾏うための⽅策 【59】(PaperID: 479) Best Paper in Multi-Robot Systems
  109. 109. • M. Zhao, et al. “Design, Modeling, and Control of an Aerial Robot DRAGON: A Dual-Rotor-Embedded Multilink Robot With the Ability of Multi-Degree-of-Freedom Aerial Transformation”, in ICRA 2018. – 複数のリンクを連結させ,空中で変形可能なUAVを提案 – 重⼼によらず⾃由に姿勢の変形を⾏うことができる 【60】(PaperID: RA-Letter) Best Paper in UAV
  110. 110. • P. Jund, et al. “Optimization Beyond the Convolution: Generalizing Spatial Relations with End-to-End Metric Learning”, in ICRA 2018. – 物体間の関係性をEnd-to-Endに距離学習(Metric Learning) – 距離学習にはSiameseNetを適⽤し,3次元空間を距離空間に投影 【61】(PaperID: 1224) Best Paper in Robotic Vision
  111. 111. • M. I. Valls, et al. “Design of an Autonomous Racecar: Perception, State Estimation and System Integration”, in ICRA 2018. – 4WDのRaceCarを⾃動運転に置き換えた – Formula Student Germany 2017 にて優勝 – LiDAR/GPS/視覚センサを搭載 – Extended Kalman Filterによる位置推定,PF-based SLAM 【62】(PaperID: 949) Best Student Paper Award
  112. 112. • A. Faust, et al. “PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling- based Planning”, in ICRA 2018. – 屋内環境ナビ/ドローンによる貨物輸送を⻑時間にわたりサポート するロボットを開発し,ケーススタディを実施 – 強化学習により短距離の移動を学習,それらをつなぎ合わせ⻑距 離の移動を可能とする – 屋内環境ナビは215m/ドローンは1000m以上のサポートを達成 【63】(PaperID: 1699) Best Paper in Service Robotics
  113. 113. • P. Culberson, et al. “Decentralized Adaptive Control for Collaborative Manipulation”, in ICRA 2018. – 複数のエージェントが協調しながらマニピュレーションを⾏う(が, お互いにコミュニケーションは取っていない) – 各エージェントは⾓速度の計測を⾏い調整しながら操作 【64】(PaperID: 759) Best Paper in Robot Manipulation
  114. 114. • C. Mitash, et al. “Improving 6D Pose Estimation of Objects in Clutter via Physics-aware Monte Carlo Tree Search”, in ICRA 2018. – RGBDの⼊⼒による6D物体検出の改善 – 探索にはMonte Carlo Tree Search (MCTS)を適⽤ 【65】(PaperID: 1003)
  115. 115. • T. Ort, et al. “Autonomous Vehicle Navigation in Rural Environments without Detailed Prior Maps”, in ICRA 2018. – 詳細な地図なし(オープンな地図のみ)に⾃動運転ナビ”Mapless Autonomous Control System”を実現 – センサにはVelodyne HDL-64を使⽤して道路⾯をセグメンテーション – 実空間における距離よりもトポロジカルなマップを使⽤ 【66】(PaperID: 1048)
  116. 116. • B. T. Lopez, et al. “Robust Collision Avoidance via Sliding Control”, in ICRA 2018. – 未知環境にてドローンを制御して障害物を避けるための試み – Composite Adaptive Sliding Controller (CASC)を適⽤することで安 定的に制御することができるようになると主張 【67】(PaperID: 1049)
  117. 117. • M. Brucker, et al. “Semantic Labeling of Indoor Environments from 3D RGB Maps”, in ICRA 2018. – アパートの部屋を想定し,3D RGBマップに対してセマンティックラベ ルを付与する – 深層学習によりシーン認識/物体検出を実施する 【68】(PaperID: 1076)
  118. 118. • E. Ruiz, et al. “Where can I do this? Geometric Affordance from a Single Example with the Interaction Tensor”, in ICRA 2018. – その⾏為⾃体をどこでできるか,がわかるAffordance Tensorを提案 – 3D空間内に候補位置を投影することができる 【69】(PaperID: 1104)
  119. 119. • M. Wigness, et al. “Robot Navigation from Human Demonstration: Learning Control Behaviors”, in ICRA 2018. – 最⼩限の⼈間の教⽰により移動してナビゲーション可能 – ⼈間の⾏動を⾒ながら学習する模倣学習 【70】(PaperID: 1116)
  120. 120. • K. Fang, et al. “Multi-Task Domain Adaptation for Deep Learning of Instance Grasping from Simulation”, in ICRA 2018. – インスタンス把持のためのMulti-task domain adaptationを提案 – 実画像/シミュレーション画像を⽤いてドメイン変換を学習 【71】(PaperID: 1119)
  121. 121. • A. Murali, et al. “CASSL: Curriculum Accelerated Self-Supervised Learning”, in ICRA 2018. – ⾏動空間を効率的にSelf-Supervised学習できるCASSLを提案 – 複数のパラメータ空間{Mode, Height, θ, α, β, Force}を⾃⼰学習 【72】(PaperID: 1149)
  122. 122. • I. A. Barsan, et al. “Robust Dense Mapping for Large-Scale Dynamic Environments”, in ICRA 2018. – ⼤規模かつ動的な3次元空間を構築するためのステレオベースのマッピ ングアルゴリズムを提案 – 静的な背景と同時に移動(する可能性のあるものも含めて)物体のモ デリングを別々に⾏った – C 【73】(PaperID: 1178)
  123. 123. • M. Tanner, et al. “Meshed Up: Learnt Error Correction in 3D Reconstructions”, in ICRA 2018. – デンスな3次元メッシュの再構成を提案 – 再構成されたデータと正解値とのエラーを計算して機械学習により誤 差を最⼩化してメッシュを修正 【74】(PaperID: 1229)
  124. 124. • G. Beraldo, et al. “Brain-Computer Interface meets ROS: A Robotic approach to mentally drive telepresence robots”, in ICRA 2018. – Brain-Computer Interface (BCI)によるテレプレゼンスロボットを構 築する際にRobot Operating System (ROS)を使⽤ – ロボットの位置を修正するために⼆つのマップ(ナビゲーション/ロー カライズ)を使⽤ 【75】(PaperID: 1231)
  125. 125. • Z. Wang, et al. “Defo-Net: Learning Body Deformation using Generative Adversarial Networks”, in ICRA 2018. – Conditional GANを⽤い,変形を理解して適切なルートを選択 – 下図のシーンではゴールに向かうまでのルートに形状変形が起こりう ることを察知して選択的に移動 【76】(PaperID: 1261)
  126. 126. • W. Yuan, et al. “Active Clothing Material Perception using Tactile Sensing and Deep Learning”, in ICRA 2018. – ロボットによる⾐服の状態を推定するネットワーク構築 – Kinect/GelSightセンサにより画像を抽出 【77】(PaperID: 1268)
  127. 127. • T. Miki, et al. “Multi-agent Time-based Decision-making for the Search and Action Problem”, in ICRA 2018. – 3次元シミュレーション空間内で⾃律移動してSearch/Pick/Placeに関 する意志決定 – Mohamed Bin Zayed International Robotics Challenge (MBZIRC) の⽂脈で評価した 【78】(PaperID: 1280)
  128. 128. • X. Yan, et al. “Learning 6-DOF Grasping Interaction via Deep Geometry-aware 3D Representation”, in ICRA 2018. – デモンストレーションから把持インタラクションを学習する枠組みを 提案する – 2.5Dの学習データから3D幾何学に関する表現を獲得,内的な表現から 物体把持のための推定を学習 【79】(PaperID: 1282)
  129. 129. • P Schydlo, et al. “Anticipation in Human-Robot Cooperation: A Recurrent Neural Network Approach for Multiple Action Sequences Prediction”, in ICRA 2018. – ノンバーバルな⼈間の意図予測を実⾏ – 視線や姿勢を⼿掛かりとして特徴選択を⾏うことで意図予測 – 複数かつマルチスケールで⾏動シーケンスを予測 – Encoder-Decoder型の再帰的ネットを使⽤ 【80】(PaperID: 1283)
  130. 130. • P. Amayo, et al. “Fast Global Labeling For Depth-Map Improvement Via Architectural Priors”, in ICRA 2018. – 建物や壁という事前知識を導⼊することでテクスチャの少ない場合で もDenseMapを⽣成することができる – Odometry/Homographyのみならず,SemanticLabeを推定し,事前 知識として使⽤ 【81】(PaperID: 1304)
  131. 131. • K. Park, et al. “High-precision Depth Estimation with the 3D LiDAR and Stereo Fusion”, in ICRA 2018. – 3D LiDARとステレオを組み合わせることで⾼精度な距離画像を推定 – 下図のフローに着⽬すると,最初のステップで はLiDAR/Stereoを統合,次に⽣成された距離画像 を,RGB画像を⽤いることでリファインメント – ⽣成された距離画像を⽤いて密な3D空間を構築 【82】(PaperID: 1316)
  132. 132. • C. Devin, et al. “Deep Object-Centric Representations for Generalizable Robot Learning”, in ICRA 2018. – 物体の事前情報とセマンティク特徴を⽤いてパーセプションを学習 – 把持のための少数の軌跡/デモによる教⽰で実⾏ – ある物体のアテンションに着⽬することが効果的 【83】(PaperID: 1350)
  133. 133. • R. Sconna, et al. “StaticFusion: Background Reconstruction for Dense RGB-D SLAM in Dynamic Environments”, in ICRA 2018. – 動的な環境におけるVisual SLAMの提案 – 動く物体検知と背景構造の再構築を同時進⾏ – クラスタリング/オドメトリから背景領域をセグメンテーション 【84】(PaperID: 1361)
  134. 134. • K. A. Tsintotas, et al. “Assigning Visual Words to Places for Loop Closure Detection”, in ICRA 2018. – 場所の認識,特に以前に同じ場所を通ったかどうかを判断すること は”Loop Closure Detection (LCD)”と⾔われ,SLAM等では重要 – Visual Words (VW)の登録により場所の登録と検索を⾏いLCDを実⾏ – SURF特徴が⽤いられた 【85】(PaperID: 1363)
  135. 135. • S. Sharma, et al. “Beyond Pixels: Leveraging Geometry and Shape Cues for Online Multi-Object Tracking”, in ICRA 2018. – 物体形状/姿勢も含めて物体の検出・追跡を実施するのみでなく,フ レーム間で対象物体がいかに動いたかを認識 – データアソシエーション(追跡動線を異なるフレーム間で対応づける こと)/最適化の⼿法に依存せず枠組みを実装可能 【86】(PaperID: 1364)
  136. 136. • W. C. Tan, et al. “Historical Data is Useful for Navigation Planning: Data Driven Route Generation for Autonomous Ship”, in ICRA 2018. – 歴史的な貨物船の移動記録から,データドリブンにルートの⽣成 – データはオーストラリアの政府ページからダウンロード https://www.operations.amsa.gov.au/Spatial/DataServices/Map Product 【87】(PaperID: 1370)
  137. 137. • P. M. Wensing, et al. “Cooperative Adaptive Control for Cloud- Based Robotics”, in ICRA 2018. – マニピュレーション作業を複数のロボットで強調するためにクラウド 上で情報共有を⾏う – 物体は共通するが,異なる環境の異なるロボットが協調して把持姿勢 を獲得していく 【88】(PaperID: 1413)
  138. 138. • F. Chao, et al. “Generative Adversarial Nets in Robotic Chinese Calligraphy”, in ICRA 2018. – 中国語字体のハンドライティングをGANにより実⾏ – 従来のGANではうまく動作しなかったが,リワードを変更したところ うまく動作 【89】(PaperID: 1445)
  139. 139. • P. Sermanet, et al. “Time-Contrastive Networks: Self-Supervised Learning from Video ”, in ICRA 2018. – Triplet-loss(3画像のセットにより学習)によりSelf-Supervised学習 により把持のための特徴表現を獲得 – アンカーとなる画像を⼀枚選択,Positive:同じタイミングの異なる ビューポイント,Negative: 同じビューポイントの異なるタイミング の画像を⼊⼒し,Pと近くNと離すように空間を学習(下図参照) 【90】(PaperID: 1458)
  140. 140. • D. Xu, et al. “Neural Task Programming: Learning to Generalize Across Hierarchical Tasks”, in ICRA 2018. – Neural Task Programming (NTP)を提案,あるタスクをサブタスク に分割して解決 – Few-shot学習の枠組みかつEnd-to-Endで学習可能 【91】(PaperID: 1475)
  141. 141. • X. B. Peng, et al. “Sim-to-Real Transfer of Robotic Control with Dynamic Randomization”, in ICRA 2018. – シミュレーションからリアルへのギャップを埋めるためのシンプルな 技術を提案 – アピアランスの代わりにダイナミクスを学習することがギャップを埋 めることである 【92】(PaperID: 1478)
  142. 142. • L. F. Posada, et al. “Semantic Mapping with Omnidirectional Vision”, in ICRA 2018. – 全⽅位カメラを⽤いて作成した地図に対してセマンティックマッピン グを⾏う – 俯瞰画像⽣成,OccupancyMap,シーン認識,セマンティックマッピ ングなどのコンポーネントから構成される 【93】(PaperID: 1484)
  143. 143. • W.-C. Chang, et al. “Eye On You: Fusing Gesture Data from Depth Camera and Inertial Sensors for Person Identification”, in ICRA 2018. – 距離センサとIMUの組み合わせによる⼈物認証(PID; Person Identification) – PIDの枠組みをロボット/モバイルなど計算機環境に制限がある環境に 搭載 【94】(PaperID: 1512)
  144. 144. • S. Wang, et al. “Realization of a Real-time Optimal Control Strategy to Stabilize a Falling Humanoid Robot with Hand Contact”, in ICRA 2018. – 壁や床などの平⾯に⼿をついて転倒を防ぐロボットの開発 – Darwin-Mini Robotを使⽤した – 基本的には右図のような軸⾜側への3点リンクによる姿勢をとることで ⼿をつくことができ,転倒の衝撃を低減できる 【95】(PaperID: 1556)
  145. 145. • P. Parkhiya, et al. “Constructing Category-Specific Models for Monocular Object-SLAM”, in ICRA 2018. – 従来は物体レベルであったのに対してここではカテゴリレベルで Monocular SLAMを実施する – 物体検出,セマンティックセグメンテーション,物体のキーポイント 検出とMono-SLAMを統合 – フレームワークは右図 【96】(PaperID: 1571)
  146. 146. • A. Milan, et al. “Semantic Segmentation from Limited Training Data”, in ICRA 2018. – Amazon Robotics Challenge (ARC) 2017の優勝者の論⽂ – 少量の学習画像のみしか与えられていない状況でいかにセマンティッ クラベルを獲得する学習を実⾏できるかを検討 – ひとつの⽅法は距離学習:カテゴリによらず物体境界を推定,パッチ ごとの識別,ピクセルごとの投票 – もうひとつは効率的なデータセット収集による教師あり学習 【97】(PaperID: 1648)
  147. 147. • G. Bledt, et al. “Contact Model Fusion for Event-Based Locomotion in Unstructured Terrains”, in ICRA 2018. – MIT Cheetah 3の開発 – 時間ごとに歩⾏を制御するのではなく,イベントごとに制御する⽅が 効率良く歩けるという提案 【98】(PaperID: 1670)
  148. 148. • C. Fabbri, et al. “Enhancing Underwater Imagery using Generative Adversarial Networks”, in ICRA 2018. – ⽔中画像の画像の荒さをGANを⽤いることで画質改善 – CycleGANと⽐較して,提案のUGANは画質を良くすることに成功 【99】(PaperID: 1691)
  149. 149. • J. Mahler, et al. “Dex-Net 3.0: Computing Robust Vacuum Suction Grasp Targets in Point Clouds using a New Analytic Model and Deep Learning”, in ICRA 2018. – ポイントクラウドの⼊⼒から物体ピッキングに必要な接地⾯を推定 – 吸引型のロボットピッキングにより⾼精度に物体を持ち上げることに 成功 【100】(PaperID: 1822)
  150. 150. ご質問・コメント等ありましたら,cvpaper.challenge@gmail.com / Twitter@CVPaperChallengまでお願いします.

×