Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
1
D A C , AD
-
E .
.A C
Yasuhide Miura
• 1 ) -21I g -
1 31 -
• c @ IM TI
1 - 3- -3 3 2 d C 1 - 3-
- ( 1 3 2 ( a
• 1 3 1 @ RT bA 1 -
1 e E
33
• C I C
•
• I - 3
18 4 74 18 T
. 7 84 L[F 4 72 41 7
4 1 7 4 1 87 1 4 ]
1 87 1 7 4 18 0
NM [F T
4 72 41 7 C NM S a
NM L S T -1 1 4 18 0
NM R ...
T
• ( 55A5) - 5 ) -
• ) A L
5) ) ( ) -
• EC M 5) )
( ) - 5) ) 55
) -
•
-
-
• 8 -
• -
- 8
1 0 2. 7 7-.
• 0-7 9 1 0 2.
L H - 1 2 -7 0
1: anchor
pair sampling
2:
sampling
- 1 1 -
• M A
L
• M A
Discriminator
Image
Vector
1 / - 3 / / 3 / &
• 3
I C T
• 3 3 & L &
• 3 3 & L &
• -- C
– 1 1
– 14
-
- cake chicken salad
8
• 1
–
…
StackGAN
A
) ( -1
( ( - - 9
L
• 2 2 0 - n
-
a
• EoiS M T R
• 2 0 - n lg
E MAL M em
C d M
a
• 3C CPI / ZGP CJ .JGPIJC 7KW 0G RGPI 7KO G GP . 3 3 K AA
A E D A + E :A : - A A
• 5 AJ W 2 /KPI CPF 2W 7C GP GOCP KE RC...
【CVPR 2019】Learning Cross Modal Embeddings with Adversarial Networks for Cooking Recipes and Food Images
【CVPR 2019】Learning Cross Modal Embeddings with Adversarial Networks for Cooking Recipes and Food Images
【CVPR 2019】Learning Cross Modal Embeddings with Adversarial Networks for Cooking Recipes and Food Images
【CVPR 2019】Learning Cross Modal Embeddings with Adversarial Networks for Cooking Recipes and Food Images
Upcoming SlideShare
Loading in …5
×

【CVPR 2019】Learning Cross Modal Embeddings with Adversarial Networks for Cooking Recipes and Food Images

461 views

Published on

cvpaper.challenge はコンピュータビジョン分野の今を映し、トレンドを創り出す挑戦です。論文読破・まとめ・アイディア考案・議論・実装・論文投稿に取り組み、あらゆる知識を共有しています。
http://xpaperchallenge.org/cv/

本資料は、CVPR 2019 網羅的サーベイの成果の一部で、1論文を精読してプレゼンテーション形式でまとめております。論文サマリは下記からご確認頂けます。
http://xpaperchallenge.org/cv/survey/cvpr2019_summaries/listall/

Published in: Technology
  • Be the first to comment

【CVPR 2019】Learning Cross Modal Embeddings with Adversarial Networks for Cooking Recipes and Food Images

  1. 1. 1 D A C , AD - E . .A C Yasuhide Miura
  2. 2. • 1 ) -21I g - 1 31 - • c @ IM TI 1 - 3- -3 3 2 d C 1 - 3- - ( 1 3 2 ( a • 1 3 1 @ RT bA 1 - 1 e E
  3. 3. 33 • C I C • • I - 3
  4. 4. 18 4 74 18 T . 7 84 L[F 4 72 41 7 4 1 7 4 1 87 1 4 ] 1 87 1 7 4 18 0 NM [F T 4 72 41 7 C NM S a NM L S T -1 1 4 18 0 NM R . 7 84 [ 1 18 4 18 0 Deep Metric Learning Triplet Loss (https://qiita.com/tancoro/items/35d0925de74f21bfff14)
  5. 5. T • ( 55A5) - 5 ) - • ) A L 5) ) ( ) - • EC M 5) ) ( ) - 5) ) 55 ) -
  6. 6. • -
  7. 7. - • 8 - • - - 8
  8. 8. 1 0 2. 7 7-. • 0-7 9 1 0 2. L H - 1 2 -7 0 1: anchor pair sampling 2: sampling
  9. 9. - 1 1 - • M A L • M A Discriminator Image Vector
  10. 10. 1 / - 3 / / 3 / & • 3 I C T • 3 3 & L & • 3 3 & L &
  11. 11. • -- C – 1 1 – 14
  12. 12. -
  13. 13. - cake chicken salad
  14. 14. 8 • 1 – … StackGAN
  15. 15. A ) ( -1 ( ( - - 9
  16. 16. L • 2 2 0 - n - a • EoiS M T R • 2 0 - n lg E MAL M em C d M
  17. 17. a • 3C CPI / ZGP CJ .JGPIJC 7KW 0G RGPI 7KO G GP . 3 3 K AA A E D A + E :A : - A A • 5 AJ W 2 /KPI CPF 2W 7C GP GOCP KE RCT G 3C JKPI H T .T FCN KOKNCTK Z GCTEJ • FH N AA MLI J R SKK C E O CPE T K GO F FG H DHHH • ,OCKC CN CF T b 9KEJ NC 3ZPG b W WH ,Z CT 5C KGT CTKP 1GTFC :HNK 4PIOCT GDGT ,P PK TTCNDC 7GCTPKPI .T O FCN 0ODGFFKPI H T . MKPI GEKRG CPF 1 F 4OCIG • KECGN .CT CNJ OK .CF PG /C KF KECTF 7CWTG WNKGT 9KE NC J OG C JKGW . TF .T FCN G TKG CN KP JG . MKPI . P GY 7GCTPKPI GOCP KE GY 4OCIG 0ODGFFKPI • 1CT C J 1CIJTK /C KF 5 1NGG 5COKG ZCP KT CPLC 1KFNGT D AC A E + D A • ,NGYCPFGT 3GTOCP 7WEC -GZGT -C KCP 7GKDG A AA A -

×