Assimilating Self-Driving Cars Into Society: Travel Impacts & Transport Policy Choices

Center for Transportation Research - UT Austin
Center for Transportation Research - UT AustinCenter for Transportation Research - UT Austin
ASSIMILATING SELF‐DRIVING CARS
INTO SOCIETY:
Travel Impacts & Transport Policy Choices
Panelists Kara Kockelman & Lisa Loftus‐Otway, UT Austin
Self-driving cars are game changers.
 Revolution or Evolution....
 Where do you think we are?
 A lot can happen in 13 years…
1900: 5th Ave NYC Easter Parade
Spot 
the car!
1913: 5th Ave NYC Easter Parade
Source: George Grantham Bain Collection
Spot the 
horse!
Introduction
“You can count on one hand the number of years it will 
take before ordinary people can experience (AVs).”
–Sergey Brin, at the 2012 signing of California’s SB 1298.
Opportunities for CAVs
 U.S. Safety
 In 2014, 6.0 million crashes in the U.S. resulting in 32,675 deaths & 
>$500+ billion in comprehensive costs.
 Driver error is primary cause of > 90% of U.S. crashes.
 40% of fatal crashes involve alcohol, drugs, fatigue &/or distraction. 
 AVs can dramatically impact safety by reducing human errors.
 U.S. Congestion
 7 billion hours of delay & $160 billion  losses in 2014.
 Reductions possible via traffic smoothing, tighter headways, 
cooperative adaptive cruise control (CACC) & fewer crashes.
Opportunities (2)
 Traveler Behaviors
 Car‐sharing & ride‐sharing
 Increased mobility for 
elderly, disabled, & children?
 Parking benefits
 Latent & induced VMT
 Freight Movement
 Reduced labor & thus shipping costs
 Improved fuel economies from tight‐headway drafting
0%
2%
4%
6%
8%
10%
12%
14%
16%
18%
Midnight
3:00 AM
6:00 AM
9:00 AM
Noon
3:00 PM
6:00 PM
9:00 PM
Midnight
Vehs ≤ 10 yrs
Vehs ≤ 15 yrs
All vehs
Part 1
What Are AVs Worth?
- to Society & to Individual Owners
Annual Per-AV Economic Impacts
Assumed Market Share
10% 50% 90%
Crashes
Lives Saved 1,100 9,600 21,700
Economic Savings per AV per year $430 $770 $960
Comprehen. Savings per AV per yr $1,390 $2,480 $3,100
Congestion
Travel Time Savings (M Hours) 756 1,680 2,770
Fuel Savings (M Gallons) 102 224 724
Savings per AV per year $1,320  $590  $550 
Other Impacts
Parking Savings per AV per year $250  $250  $250 
VMT Increase 2.0% 7.5% 9.0%
Change in Total # Vehicles ‐4.7% ‐23.7% ‐42.6%
(U.S. Context, $2012)
Totaled Social Benefits
Assumed Market Share
10% 50% 90%
Annual U.S. Savings: Economic Benefits Only $26 B $102 B $201 B
Annual U.S. Savings: Comprehensive Benefits $38 B $211 B $447 B
Savings Per AV per year: Econ. Benefits Only $2,000  $1,610  $1,760 
Savings Per AV per year: Comprehen. Benefits $2,960  $3,320  $3,900 
Net Present Value (NPV) of AV Benefits minus 
Purchase Price (Econ. Benefits Only) $5,200 $7,250 $10,400
Net Present Value of AV Benefits minus Purchase 
Price (Comprehensive Benefits) $12,500
$20,300 
per AV sold $26,700
Added Purchase Price $10,000 $5,000 $3,000
U.S. Industry Impacts, at 100% Adoption
Industry
Industry Size
($B/yr)
Industry Impact
($B/yr)
% Change in
Industry
$ per Capita per Year
Insurance $180B/yr $108B/yr 60% $339/person/yr
Freight Transportation $604 $100 17% $313
Land Development $931 $45 5% $142
Automotive $570 $42 7% $132
Personal Transport $86 $27 31% $83
Electronics & Software
Technology
$203 $26 13% $83
Auto Repair $58 $21 36% $66
Digital Media $42 $14 33% $44
Medical $2,700 $12 0% $36
Oil and Gas $284 $10 4% $31
Construction/Infrastructure $169 $8 4% $24
Traffic Police $10 $5 50% $16
Law $277 $3 1% $10
Industry-based Totals $6,113 $420B/year 7% $1,318/person/year
Adding in Additional Effects:
Travel Time “Productivity” Rises
+ Pain & Suffering from Crashes Fall
Economy-Wide (non-Industry-based) Effects
Economic Impact ($B/yr) $ per Capita per Year
Productivity en
Route
$645 Billion/year $2,022/person-year
Pain & Suffering +
other Crash Costs
$488 B/year $1,530
Additional Effects $1,133 B/year $3,552/person-year
Overall Totals
(industry + other)
$1.4 Trillion per year! $4,419 per person-year
Part 2
Forecasting Americans’ Long-Term
Adoption of Connected & Autonomous
Vehicle (C/AV) Technologies
Willingness to Pay (WTP)
Average 
WTP
Average WTP
(if WTP > 0)
% of Respondents 
with $0 WTP
Electronic Stability Control $52 $79 33.4%
Lane Centering $205 $352 41.7%
Left Turn Assist $119 $221 46.1%
Cross Traffic Sensor $169 $252 32.8%
Adaptive Headlight  $203 $345 41.1%
Pedestrian Detect  $145 $232 37.5%
Adaptive Cruise Control $126 $202 37.7%
Blind Spot Monitoring $160 $210 23.7%
Traffic Sign Recognition $93 $204 54.4%
Emergency Automatic Braking  $183 $257 28.7%
Level 3 Automation $2,438 $5,470 55.4%
Self‐parking Valet System $436 $902 51.7%
Level 4 Automation $5,857 $14,196 58.7%
Connectivity (DSRC) $67 $111 39.1%
Simulating Fleet Evolution
Vehicle inventory
Demographics
Travel Patterns
Technology evolution
Transaction
decision model
(multinomial logit)
Add technologies
to old vehicles
Sell a vehicle
and buy vehicles
Buy vehicles
Sell a vehicle
Add connectivity
if WTP≥ Price
Buy new or
used? (Logit)
LV4 WTP
≥ Price
LV3 WTP
≥ Price
Dispose of
the oldest vehicle
Add connectivity
if WTP≥ Price
Vehicle
is already
LV3 or LV4
End: Do nothing
End: Dispose of
the oldest vehicle
New
Used
End:
Add LV4
End: Add LV1,
LV2, or self-
parking valet
if WTP≥ Price
No
End:
Add LV3
No
No
Yes
Yes
Yes
Same process for each household, every year.
Predicted Shares of US Light-duty Vehicles
59.5%
83.5%
100.0% 100.0%
100.0% 100.0%
100.0%
0.0%
100.0%
0%
25%
50%
75%
100%
2015 2020 2025 2030 2035 2040 2045
DSRC‐based Connectivity
43.0%
43.8%
24.8%
43.4%
43.2%
70.7%
59.7%
0.0%
87.2%
0%
25%
50%
75%
100%
2015 2020 2025 2030 2035 2040 2045
Level 4 Automation
Part 3
Agent-Based Models for Shared AVs
+ = &
 Less than 20% of newer (& 15% of all) personal vehicles are in‐use at 
peak times, even with 5‐minute pickup & drop‐off buffers.
 Car‐sharing programs like ZipCar &  Car2go have expanded quickly, 
with the number of U.S. users doubling every  year or two, over the 
past decade.
 Shared Autonomous Vehicles (SAVs) can help overcome car‐sharing 
barriers, like return‐trip certainty &  vehicle access distances.
Agent-Based Model Framework
 Grid‐based 10 mi x 10 mi urban area with 0.25‐sq. mile zones.
 Trip generation:
 Poisson‐based PK & OP counts for trip generation, every 5 minutes.
 Higher trip production & attraction rates closer to city center.
 Mostly round‐trip travel, with 78% travelers returning via SAVs.
 Random departure times & trip distances (2009 NHTS).
 SAVs travel at fixed speeds, with 5 min. intervals.
0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%
3.5%
4.0%
4.5%
5.0%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 1 2 3 4 5 6 7 8 9 1
0
1
1
1
2
1
3
1
4
1
5
Midnight ‐ 3 AM
3 AM ‐ 6 AM
6 AM ‐ 9 AM
9 AM ‐ Noon
Noon ‐ 3 PM
3 PM ‐ 6 PM
6 PM ‐ 9 PM
9 PM ‐ Midnight
Trip Generation Trip Distances (mi.)Dwell Times (hrs.)
Example: One SAV’s 24-hour Journey
Higher AM Trip 
Attraction
Higher PM Trip 
Attraction
• Red Arrows
SAV Relocation
• Blue Arrows
Serving Riders
5 mi
10 mi
SE
Case Study Results
 100 days were simulated to assess SAV travel implications.
Parameter Value
Service area 10 mi. x 10 mi.
Outer trip generation rate 9 trips/cell/day
CBD edge trip generation rate 27 trips/cell/day
CBD core trip generation rate 30 trips/cell/day
Off‐peak speed 33 mph
Peak speed 21 mph
AM peak 7 AM ‐ 8 AM
PM peak 4 PM ‐ 6:30 PM
Trip share returning by SAV 78%
Scenario Results
 Each SAV replaced 9 to 13 
conventional vehicles.
 Avg. wait time ≈ 2.8 min.
 11% new/induced (empty‐
vehicle) travel.
 Yet 5% to 50% (GHG vs. VOCs) 
life‐cycle emissions reductions, 
thanks to smaller vehicles,
fewer cold starts, & less 
parking infrastructure!
Part 4
What if SAVs Serve Central Austin, &
Offer Dynamic Ride-Sharing (DRS)?
One SAV’s
24-hour day
Dropoff
Pickup
Travel
Case Study Results
 1:10 & 1:8 veh. replacement 
rates (with & w/o DRS)
 System pays for itself with 
just $1/mile fares!
 Electric vehicles (Leaf & 
Model S) also tested (with 
inductive charging), using 
100 mi x 100 mi region.
 DRS saves more emissions ‐
& VMT even falls (vs. BAU).
Measure With DRS Without DRS
SAV fleet size 1,855 2,181
Veh. replacement rate 9.95 8.47
Average wait time 57 sec 47 sec
% Waiting > 10 min. 0.60% 0.33%
5‐6 PM avg. wait 3.0 min 2.4 min
Avg. total trip time 14.4 min 13.8 min
New VMT introduced 4.90% 7.92%
# rides shared 5,754 0
% VMT shared 4.50% 0%
 24‐hour days simulated with 56,300 to 270,000 trips served.
 Excellent Level of Service (typ. wait time < 3 min.)
Part 5
What if SAVs Serve the Entire Region?
And Are SAElectricVs?
Shared Autonomous Electric Vehicles
SAEVs
or
Station Generation via 30-day Initial Run
Check for 
unmet 
requests
Find closest 
SAEV
SAEV has 
range to meet 
trip request?
Unmet 
request Send SAEV to 
serve trip
Yes
t=t+1sec
Next 
timestep: 
t=t+1sec
No new 
requests
None 
available
Is a charging 
station also in 
range?
No
Create new 
station at 
vehicle’s 
location
No
SAEV begins 
charging
SAEV heads 
to closest 
station
SAEV removed 
from 
consideration
Try again, in 
next timestep
Yes
Charging Station Locations
 Charging stations generated based on demand. 
 Number of charging stations formed is dependent only 
on vehicle range. 
 Stations 
formed for 
200‐mile 
range (left) 
& 60‐mile 
range 
(right) 
Central Austin Station Locations
Assuming 60 mile range + 4 hour charge time + 5:1 travelers per 
SAEV  (= 28 stations over 6 x 10 mi area)
Austin SAEV Results
Scenario
Gas 
SAV
Short‐
Range 
SAEV
Long‐Range 
Fast Charge
Long‐
Range 
SAEV
Short‐Range 
but Fast 
Charge
Long‐Range,
Fast Charge, 
Smaller Fleet
Range (mi) 525 60 200 200 60 200
Recharge/Refuel Time (min) 2 240  30 240 30 30
# of Charging/Gas Stations 19 155 155 155 155 155
Fleet Size (# vehicles) 5,893 5,893 5,893 5,893 5,893 4,124
Avg. Daily miles per Vehicle 452 201 354 441 355 501
% of Unserved Trips 1.62 60.6 19.4 2.67 16.2 15.2
Avg. Daily Trips per Vehicle 28.5 11.4 23.4 28.2 24.3 35.1
Avg.  Wait Time Per Trip (min) 4.45 9.82 8.76 5.49 6.16 9.55
% Unoccupied Travel 6.05 13.1 7.88 6.86 14.2 8.62
% Travel for Charging 0.65 5.59 1.26 1.05 5.34 1.27
• Fleet size is key to lower response times. Tripling fleet size (from 9:1 to 3:1 
travelers per SAEV) lowers average response times by >75%.
• Longer charge times increase response times (& unserved trips rise 19% to 61%)
• Longer ranges lower empty VMT, but fast‐charging improves response times.
• Trips in Austin’s urban core are served best (e.g., never exceed 30‐min wait times).
SAEV Cost Assumptions
• Conventional BEV Costs: $25,000 (short range) to $35,000 (long‐range)
• Self‐driving Technology Cost: $5,000 to $25,000 per vehicle
• Battery Replacement: $100 ‐ $190 per kWh (once per vehicle life)
• Vehicle Maintenance: 5.4¢ to ‐6.6¢ per mile
• Insurance & Registration: $550 ‐ $2,200 per vehicle‐year
• Electricity: 8¢ to 20¢ per kWh
• Level II Chargers: $8,000 ‐ $18,000 each
• Level II Charger Maintenance: $25 ‐ $50 per year, per charger
• Fast (Level III) Charger: $10,000 ‐ $100,000 per charger
• Fast Charger Maintenance: $1,000 ‐ $2,000 per year, per charger
• Station Properties: $1,980 to $6,900 per vehicle space (based on location)
Financial Results: Costs per Mile
Mid‐Range
Expected Costs
per mile
Gasoline 
SAV
Short‐
Range 
SAEV
Long‐
Range 
SAEV
Fast‐
Charge, 
Long‐
Range
SAEV
Fast‐
Charge 
SAEV
Fast‐Charge, 
Long‐Range 
Reduced 
Fleet
Electricity/Fuel 6.39¢/mi 4.51 4.26 4.21 4.57 4.29
Vehicle Maint., 
Admin +
Attendants
18.4¢/mi 19.7 18.6 18.4 19.9 18.7
Charger Costs (Land 
+ Infrastructure)
n/a 3.57 1.35 2.15 6.30 0.76
Vehicle Purchase  19.6¢/mi 27.7 29.4 28.3 25.3 28.4
Battery Costs n/a 1.58 4.91 4.85 1.60 4.95
Total Costs per Mile 45¢/mi 59¢/mi 59¢/mi 59¢/mi 59¢/mi 59¢/mi
Daily Vehicle Profit 
($1/mile fare)
$234
/veh‐day
$72 $132 $170 $126 $187
#Trips/vehicle‐day
28 trips
/veh‐day
11 23 28 24 35
Response time/trip 4.4 min 9.8 8.8 5.5 6.2 9.6
Part 6
How Should We Modify our Travel
Demand Models & Plan for the Future?
More Complete Model Assumptions
 Vehicle ownership changes over time (AVs cost more & SAVs 
allow people to avoid ownership).
 Travel times are less burdensome (for drivers)
 Lower values of travel time thanks to more productive (& restful!) in‐
vehicle activities
 Affect trip mode choice probabilities
 Travel costs may fall
 AVs can head to lower‐cost parking locations
 Shared AVs reduce overall vehicle‐use costs
 Dynamic ride‐sharing reduces per‐trip costs even further
 Link capacities rise on roadways
 V2V communications (e.g., CACC) + smart intersections (long term)
 AVs may eventually follow at shorter headways & distances
 Hopefully lower travel times & travel‐time unreliability…
However, we also expect…
 Longer travel distances (more distant destinations).
 More trip‐making by those presently unlicensed, with 
disabilities &/or other difficulties driving.
 Less air travel by passengers & rail travel by freight.
 Possibly larger, less‐efficient vehicles, for longer‐distance 
trips, & more land use sprawl.
This means…
 Rising congestion & infrastructure damage in many locations.
 Need for smarter system management, including incentives 
for ride‐sharing & non‐motorized travel, route guidance, 
credit‐based congestion pricing & micro‐tolling ‐ to 
internalize externalities & operate more efficiently, equitably, 
& sustainably!
In Conclusion…
 CAVs offer tremendous benefits for mobility, safety & parking, 
but will add VMT & congestion.
 SAVs offer a new & exciting (transit?) mode, with each SAV 
replacing ~8 personal vehicles, for same level of motorized trip‐
making.
 SAVs add 7‐10% extra VMT (though DRS may reduce VMT).
 Yet SAVs may bring useful travel‐cost savings, emissions benefits
+ profits for transit providers.
 Traditional travel models cannot capture the details of SAV 
systems & CAV operations. Microsimulation is needed.
 Smart system management practices are also needed, to avoid 
gridlock, sprawl, greater energy use, & other downsides.
So, what is going on in ‘the law’ 
around the world?
United States: Federal
• National Highway Traffic Safety Administration (NHTSA) 
preliminary policy on Automated Vehicles in 2013
– Outlined definitions for Levels 0 through 4 of automation
• NHTSA in September 2016 issued new Policy on Autonomous 
Vehicles 
– Adopted SAE J3016 definitions (L0 through Level 5) as 
their standard.
• Deliberately issued as policy & not regulations, with goal to 
set stage for consistent national framework but providing 
flexibility to states.
NHTSA 2016 Policy
Delineated roles/responsibilities for state(s) policy:
‐ States retain their traditional responsibilities for vehicle 
licensing, registration, traffic laws & enforcement, and motor 
vehicle insurance & liability.
‐ NHTSA continued preemption for interpretations, 
exemptions, notice, and rulemaking & enforcement 
authority.
Manufacturer responsibility to determine their system 
conforms with SAE J3016.
NHTSA’s Framework for
Vehicle Performance Guidance
U.S.: Federal (2)
• NHTSA October 2016: Policy on Cyber Security in 
Autonomous Vehicles
– Covers all vehicles not just HAVs & applies to designers, 
supplies, manufactures & modifiers
• FAST Act 2015, §24302 limitations on data retrieved from 
Event Data Recorders (EDRs)
– NHTSA required to determine amount of time EDRs 
should capture & record data for retrieval ... to provide 
sufficient information to investigate a motor vehicle 
crash
U.S.: State‐level
• Over 80 bills are currently in front of U.S. state legislatures on 
this topic.
• Nevada created legislation allowing testing in 2011.
• California legislation authorized a pilot program in 2014.
• Michigan: 2013 allowed testing of automated vehicles as long 
as human was in car.
• Michigan: 2016 allows driverless cars to be driven for any of the 
following purposes, no human required to be in car:
– Personal use; road testing; as part of a SAVE program or “on‐
demand automated vehicle network;” & as part of a platoon.
California’s & Michigan’s approaches differ...
 California: prescriptive approach
 Required rulemaking by agencies, pilot tests must be 
authorized, test vehicles do not require driver behind 
wheel, but qualified test drivers must have ability to take 
control, minimum insurance surety bond of $5 million.
 Michigan: framework approach
 Initially, Automakers can test AVs as long as human in car 
in original legislation.  No agency rulemaking required.
 Current legislation, allows driverless cars to be driven for 
multiple  purposes not just road testing, without a human 
in the vehicle as the AI is considered the driver. 
Stats from California’s pilot.....
• 17 testing permits (mainly Tier 1’s, OEMS & technology 
manufacturers)
• 26 traffic accidents involving HAVs (Google 22, Delphi 1, Cruise 
1, GMCruise 1, Nissan 1)
• Reported disengagements from automated mode between Dec 
1, 2015 & Nov 30, 2016:
– Bosch – 1442 – 982 miles driven(MD)
– BMW – 1 – 638 MD
– Delphi – 178 – 3125 MD
– Ford – 3 – 590 MD 
– Google – 465 – 1,060,199 MD
– GM Cruise – 284  – 9970 MD
– Nissan – 28 – 4,099 MD
– Mercedes – 336 – 673 MD
– Tesla – 182 – 530 MD
https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/autonomousveh_ol316
https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/disengagement_report_2016
European Union
EU has not yet passed any legislation specifically on HAVs. 
 EU Directive 2007/46 EEC regulates how vehicles should be designed 
& operated. 
 EU Roadworthiness Directive 2014/45 EU sets out basis for 
roadworthiness. 
Problems with the Vienna Convention on Road  Traffic Article 8’s 
language stating ‘every driver shall at all times be able to control his 
vehicle’ incidentally prevented the development & testing of HAVs.
 Amendments to the Convention in 2016 allow drivers to take hands 
off wheel in self‐driving cars.
ECE Regulation 79 also creates an impediment through requirements 
for specific steering configurations:
 advanced driver steering system is only allowed to control steering as 
long as the driver remains in primary control of vehicle at all times. 
EU Member States
 Finland, France, Germany, Netherlands, Sweden & UK 
implemented legislation in 2015/2016 
 Finland, Netherlands & Sweden, all have similar 
systems to  California’s legislation & regulations for 
pilot tests, & for driver licensing. 
 UK issued code of  practice in July 2015, which must be 
followed by any groups conducting HAV testing. This 
includes licensing & training provisions, & a risk 
management process by the testing group.  
 UK issued Vehicle Technology and Aviation Bill 2016‐
2017 in February 2017 – outlines liability for insurers of 
automated vehicles.
Activities in Canada, Japan & Australia
 Canada has not yet created federal regulation
 Province of Ontario in 2016 produced legislation & 
regulations for a pilot program
 Japan has allowed road testing, & is working to 
develop regulations
 Australia has not federally legislated
 National Transport Commission has set out 
recommendations & policy positions in 2016
 Government of New South Wales introduced legislation in 
September 2015 for road testing.  NSW released a future 
transport roadmap in fall 2016 that outlined the ministry’s 
view on the transition to HAVs
Initial Legal Issues
 Privacy, Liability, Cybersecurity & Freedom of 
Information Requests / State Open Records 
Requests all raised as concerns for automated & 
connected vehicles.
 No case law yet on these issues.
 NHTSA & FTC have noted they are reviewing 
hacking & privacy of consumer data in HAVs.  
 Federal statutes also provide penalties under the 
Computer Fraud and Abuse Act, Digital Millennium 
Copyright Act, Wiretap Act, & Patriot Act. 
Initial legal issues (2)
 Privacy realm three areas have been identified 
as needing changes to law:
1. Autonomy privacy (i.e. an individual’s privacy 
under 4th amendment to the U.S. Constitution 
e.g. illegal search & seizure); 
2. Personal information privacy, and 
3. Surveillance.
• California passed law regarding consumer 
privacy in HAVs
Initial Conclusions
 Many jurisdictions around the world have 
begun to draft legislation & regulations with 
a primary focus on pilot testing. 
 California has begun to review how it needs to 
amend its laws & regulations. 
 Legal articles have primarily focused on 
privacy, liability, cyber security & 
constitutional protections. 
Thank you!
Questions & Suggestions?
kkockelm@mail.utexas.edu
loftusotway@mail.utexas.edu
1 of 50

Recommended

Driver safety photos&movies2 by
Driver safety photos&movies2Driver safety photos&movies2
Driver safety photos&movies2joeyg6600
738 views156 slides
P.A.S.S. System™ Driver Training - Driver safety photos & movies by
P.A.S.S. System™ Driver Training - Driver safety photos & moviesP.A.S.S. System™ Driver Training - Driver safety photos & movies
P.A.S.S. System™ Driver Training - Driver safety photos & moviesjoeyg6600
899 views156 slides
ATV Safety Summit: State Legislation (Enforcement) - Knowledge and Compliance... by
ATV Safety Summit: State Legislation (Enforcement) - Knowledge and Compliance...ATV Safety Summit: State Legislation (Enforcement) - Knowledge and Compliance...
ATV Safety Summit: State Legislation (Enforcement) - Knowledge and Compliance...U.S. Consumer Product Safety Commission
1.1K views25 slides
SHUD by
SHUDSHUD
SHUDTONY LEONE
47 views33 slides
Best Foot Forward - Pedestrian Safety Campaign to Change Driver Yielding Beha... by
Best Foot Forward - Pedestrian Safety Campaign to Change Driver Yielding Beha...Best Foot Forward - Pedestrian Safety Campaign to Change Driver Yielding Beha...
Best Foot Forward - Pedestrian Safety Campaign to Change Driver Yielding Beha...Best Foot Central Florida
336 views38 slides
Winnable Battles Motor Vehicle Injuries by
Winnable Battles Motor Vehicle InjuriesWinnable Battles Motor Vehicle Injuries
Winnable Battles Motor Vehicle InjuriesPublicHealthFoundation
7.2K views21 slides

More Related Content

What's hot

Seat Belts by
Seat BeltsSeat Belts
Seat BeltsUniversity of Kentucky
4.8K views28 slides
Dangers On The Road by
Dangers On The RoadDangers On The Road
Dangers On The RoadRoadloans.com
415 views15 slides
Tony Harbron Talks Digital Marketing and the Lightfoot Story by
Tony Harbron Talks Digital Marketing and the Lightfoot StoryTony Harbron Talks Digital Marketing and the Lightfoot Story
Tony Harbron Talks Digital Marketing and the Lightfoot StoryHanna Mepstead
90 views42 slides
Webinar: Effectiveness and Cost Benefits of Crash Prevention Technologies by
Webinar: Effectiveness and Cost Benefits of Crash Prevention TechnologiesWebinar: Effectiveness and Cost Benefits of Crash Prevention Technologies
Webinar: Effectiveness and Cost Benefits of Crash Prevention TechnologiesJessica Robinson
88 views22 slides
#SaferCarsForAfrica - Alejandro Furas, Global NCAP by
#SaferCarsForAfrica - Alejandro Furas, Global NCAP#SaferCarsForAfrica - Alejandro Furas, Global NCAP
#SaferCarsForAfrica - Alejandro Furas, Global NCAPGlobal NCAP
170 views26 slides
Vision Zero Marketing Strategy Deck by
Vision Zero Marketing Strategy DeckVision Zero Marketing Strategy Deck
Vision Zero Marketing Strategy DeckXian Huang
184 views47 slides

What's hot(19)

Tony Harbron Talks Digital Marketing and the Lightfoot Story by Hanna Mepstead
Tony Harbron Talks Digital Marketing and the Lightfoot StoryTony Harbron Talks Digital Marketing and the Lightfoot Story
Tony Harbron Talks Digital Marketing and the Lightfoot Story
Hanna Mepstead90 views
Webinar: Effectiveness and Cost Benefits of Crash Prevention Technologies by Jessica Robinson
Webinar: Effectiveness and Cost Benefits of Crash Prevention TechnologiesWebinar: Effectiveness and Cost Benefits of Crash Prevention Technologies
Webinar: Effectiveness and Cost Benefits of Crash Prevention Technologies
Jessica Robinson88 views
#SaferCarsForAfrica - Alejandro Furas, Global NCAP by Global NCAP
#SaferCarsForAfrica - Alejandro Furas, Global NCAP#SaferCarsForAfrica - Alejandro Furas, Global NCAP
#SaferCarsForAfrica - Alejandro Furas, Global NCAP
Global NCAP170 views
Vision Zero Marketing Strategy Deck by Xian Huang
Vision Zero Marketing Strategy DeckVision Zero Marketing Strategy Deck
Vision Zero Marketing Strategy Deck
Xian Huang184 views
Automated Vehicles by Stradablog
Automated VehiclesAutomated Vehicles
Automated Vehicles
Stradablog542 views
The Real Culprits Behind Truck Accidents (And Why They're Rarely Held Account... by The Law Buzz
The Real Culprits Behind Truck Accidents (And Why They're Rarely Held Account...The Real Culprits Behind Truck Accidents (And Why They're Rarely Held Account...
The Real Culprits Behind Truck Accidents (And Why They're Rarely Held Account...
The Law Buzz 379 views
Road Rage: When Anger Leads To Injury On The Road by Blackwell Law Firm
Road Rage:  When Anger Leads To Injury On The RoadRoad Rage:  When Anger Leads To Injury On The Road
Road Rage: When Anger Leads To Injury On The Road
Blackwell Law Firm230 views
Most Common Causes of Car Accidents in California by Angela M. Deisley
Most Common Causes of Car Accidents in CaliforniaMost Common Causes of Car Accidents in California
Most Common Causes of Car Accidents in California
Zipcar & UC Berkeley TSRC Release Findings of 2015 National Transportation Su... by Zipcar_PR
Zipcar & UC Berkeley TSRC Release Findings of 2015 National Transportation Su...Zipcar & UC Berkeley TSRC Release Findings of 2015 National Transportation Su...
Zipcar & UC Berkeley TSRC Release Findings of 2015 National Transportation Su...
Zipcar_PR2.5K views
Patel_P_Final Motor-Vehicle-Crash Related Injuries Resourse Guide.pdf by Parth Patel, MPH
Patel_P_Final Motor-Vehicle-Crash Related Injuries Resourse Guide.pdfPatel_P_Final Motor-Vehicle-Crash Related Injuries Resourse Guide.pdf
Patel_P_Final Motor-Vehicle-Crash Related Injuries Resourse Guide.pdf
Parth Patel, MPH61 views
Cell Phone Use Driving Review Aug2006 by jdecarli
Cell Phone Use Driving Review Aug2006Cell Phone Use Driving Review Aug2006
Cell Phone Use Driving Review Aug2006
jdecarli328 views
Seatbelts white paper by Kelsey Asher
Seatbelts white paperSeatbelts white paper
Seatbelts white paper
Kelsey Asher374 views

Viewers also liked

Data Analytics: Challenges and the Internet of Moving Things by
Data Analytics: Challenges and the Internet of Moving ThingsData Analytics: Challenges and the Internet of Moving Things
Data Analytics: Challenges and the Internet of Moving ThingsCenter for Transportation Research - UT Austin
427 views9 slides
Connected and Autonomous Vehicles: The Enabling Technologies by
Connected and Autonomous Vehicles: The Enabling TechnologiesConnected and Autonomous Vehicles: The Enabling Technologies
Connected and Autonomous Vehicles: The Enabling TechnologiesCenter for Transportation Research - UT Austin
3.6K views15 slides
Planning for a Connected and Autonomous Future by
Planning for a Connected and Autonomous FuturePlanning for a Connected and Autonomous Future
Planning for a Connected and Autonomous FutureCenter for Transportation Research - UT Austin
707 views11 slides
V2X, V2I, and the Cellular Infrastructure by
V2X, V2I, and the Cellular InfrastructureV2X, V2I, and the Cellular Infrastructure
V2X, V2I, and the Cellular InfrastructureCenter for Transportation Research - UT Austin
1.7K views10 slides
Connected and Automated Vehicles (CAVs): Implications for Travel and Infrastr... by
Connected and Automated Vehicles (CAVs): Implications for Travel and Infrastr...Connected and Automated Vehicles (CAVs): Implications for Travel and Infrastr...
Connected and Automated Vehicles (CAVs): Implications for Travel and Infrastr...Center for Transportation Research - UT Austin
599 views44 slides

Viewers also liked(20)

The Race to 2021: The State of Autonomous Vehicles and a "Who's Who" of Indus... by Altimeter, a Prophet Company
The Race to 2021: The State of Autonomous Vehicles and a "Who's Who" of Indus...The Race to 2021: The State of Autonomous Vehicles and a "Who's Who" of Indus...
The Race to 2021: The State of Autonomous Vehicles and a "Who's Who" of Indus...
Study: The Future of VR, AR and Self-Driving Cars by LinkedIn
Study: The Future of VR, AR and Self-Driving CarsStudy: The Future of VR, AR and Self-Driving Cars
Study: The Future of VR, AR and Self-Driving Cars
LinkedIn869.9K views
Professional practice-1-presentation by Timun Loh
Professional practice-1-presentationProfessional practice-1-presentation
Professional practice-1-presentation
Timun Loh1.2K views
Lte By Aziz by Aziz Zoaib
Lte By AzizLte By Aziz
Lte By Aziz
Aziz Zoaib1.3K views
Opportunities & Challenges of CAV Transportation by Andrew Nix
Opportunities & Challenges of CAV TransportationOpportunities & Challenges of CAV Transportation
Opportunities & Challenges of CAV Transportation
Andrew Nix585 views
Automotive Use Cases for LTE-based V2X Study Item by Yi-Hsueh Tsai
Automotive Use Cases for LTE-based V2X Study ItemAutomotive Use Cases for LTE-based V2X Study Item
Automotive Use Cases for LTE-based V2X Study Item
Yi-Hsueh Tsai1.8K views
Transformational Transportation Technologies Workshop by Heartland2050
Transformational Transportation Technologies WorkshopTransformational Transportation Technologies Workshop
Transformational Transportation Technologies Workshop
Heartland2050567 views

Similar to Assimilating Self-Driving Cars Into Society: Travel Impacts & Transport Policy Choices

"A Vision of Safety," a Presentation from Nauto by
"A Vision of Safety," a Presentation from Nauto"A Vision of Safety," a Presentation from Nauto
"A Vision of Safety," a Presentation from NautoEdge AI and Vision Alliance
1.7K views15 slides
NISSAN DESIGN COMPETITION Edited By Jesus (1) by
NISSAN DESIGN COMPETITION Edited By Jesus (1)NISSAN DESIGN COMPETITION Edited By Jesus (1)
NISSAN DESIGN COMPETITION Edited By Jesus (1)Jesus Loera
431 views27 slides
Susan Shaheen - Worldwide Carsharing Trends and Research Highlights by
Susan Shaheen - Worldwide Carsharing Trends and Research HighlightsSusan Shaheen - Worldwide Carsharing Trends and Research Highlights
Susan Shaheen - Worldwide Carsharing Trends and Research HighlightsINVERS Mobility Solutions
2.3K views38 slides
Environmental Implication for Shared Autonomous Vehicles by
Environmental Implication for Shared Autonomous VehiclesEnvironmental Implication for Shared Autonomous Vehicles
Environmental Implication for Shared Autonomous VehiclesCenter for Transportation Research - UT Austin
565 views1 slide
Final Paper 410 by
Final Paper 410Final Paper 410
Final Paper 410George Ly
62 views10 slides
FHWA roundabout presentation by
FHWA roundabout presentationFHWA roundabout presentation
FHWA roundabout presentationTHECITYALLIANCE
7.4K views31 slides

Similar to Assimilating Self-Driving Cars Into Society: Travel Impacts & Transport Policy Choices(20)

NISSAN DESIGN COMPETITION Edited By Jesus (1) by Jesus Loera
NISSAN DESIGN COMPETITION Edited By Jesus (1)NISSAN DESIGN COMPETITION Edited By Jesus (1)
NISSAN DESIGN COMPETITION Edited By Jesus (1)
Jesus Loera431 views
Final Paper 410 by George Ly
Final Paper 410Final Paper 410
Final Paper 410
George Ly62 views
AITPM Transport Demand Forecasting by JumpingJaq
AITPM Transport Demand ForecastingAITPM Transport Demand Forecasting
AITPM Transport Demand Forecasting
JumpingJaq569 views
Photo Enforced-Red Light Camera Controversy Essay by Sandra Arveseth
Photo Enforced-Red Light Camera Controversy EssayPhoto Enforced-Red Light Camera Controversy Essay
Photo Enforced-Red Light Camera Controversy Essay
Sandra Arveseth2 views
#SaferCarsForAfrica - Collins Khumalo, AA South Africa by Global NCAP
#SaferCarsForAfrica - Collins Khumalo, AA South Africa#SaferCarsForAfrica - Collins Khumalo, AA South Africa
#SaferCarsForAfrica - Collins Khumalo, AA South Africa
Global NCAP3.6K views
Ridesharing Institute CNU Presentation by Paul Minett
Ridesharing Institute CNU PresentationRidesharing Institute CNU Presentation
Ridesharing Institute CNU Presentation
Paul Minett564 views
MORTALITY FROM ROAD CRASHES IN 193 COUNTRIES: A COMPARISON WITH OTHER LEADI... by Autoua
MORTALITY FROM ROAD CRASHES IN  193 COUNTRIES: A COMPARISON WITH  OTHER LEADI...MORTALITY FROM ROAD CRASHES IN  193 COUNTRIES: A COMPARISON WITH  OTHER LEADI...
MORTALITY FROM ROAD CRASHES IN 193 COUNTRIES: A COMPARISON WITH OTHER LEADI...
Autoua1.5K views
Plate Recognition Essay by Kim Tagtow
Plate Recognition EssayPlate Recognition Essay
Plate Recognition Essay
Kim Tagtow4 views
Worldwide Carsharing Trends and Research Highlights by Susan Shaheen
Worldwide Carsharing Trends and Research HighlightsWorldwide Carsharing Trends and Research Highlights
Worldwide Carsharing Trends and Research Highlights
Susan Shaheen1.8K views
Driverless Cars by dani007007
Driverless CarsDriverless Cars
Driverless Cars
dani007007109 views
Uber Los Angeles - My Job Application from March 10, 2011 by Jeffrey Morris Jr.
Uber Los Angeles - My Job Application from March 10, 2011 Uber Los Angeles - My Job Application from March 10, 2011
Uber Los Angeles - My Job Application from March 10, 2011
Jeffrey Morris Jr.11.5K views

More from Center for Transportation Research - UT Austin

Collaborative Sensing and Heterogeneous Networking Leveraging Vehicular Fleets by
Collaborative Sensing and Heterogeneous Networking Leveraging Vehicular FleetsCollaborative Sensing and Heterogeneous Networking Leveraging Vehicular Fleets
Collaborative Sensing and Heterogeneous Networking Leveraging Vehicular FleetsCenter for Transportation Research - UT Austin
243 views23 slides
Collaborative Sensing for Automated Vehicles by
Collaborative Sensing for Automated VehiclesCollaborative Sensing for Automated Vehicles
Collaborative Sensing for Automated VehiclesCenter for Transportation Research - UT Austin
209 views32 slides
Statistical Inference Using Stochastic Gradient Descent by
Statistical Inference Using Stochastic Gradient DescentStatistical Inference Using Stochastic Gradient Descent
Statistical Inference Using Stochastic Gradient DescentCenter for Transportation Research - UT Austin
265 views20 slides

More from Center for Transportation Research - UT Austin(20)

Recently uploaded

Democratising digital commerce in India-Report by
Democratising digital commerce in India-ReportDemocratising digital commerce in India-Report
Democratising digital commerce in India-ReportKapil Khandelwal (KK)
18 views161 slides
Future of Indian ConsumerTech by
Future of Indian ConsumerTechFuture of Indian ConsumerTech
Future of Indian ConsumerTechKapil Khandelwal (KK)
22 views68 slides
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f... by
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...TrustArc
11 views29 slides
"Running students' code in isolation. The hard way", Yurii Holiuk by
"Running students' code in isolation. The hard way", Yurii Holiuk "Running students' code in isolation. The hard way", Yurii Holiuk
"Running students' code in isolation. The hard way", Yurii Holiuk Fwdays
17 views34 slides
Serverless computing with Google Cloud (2023-24) by
Serverless computing with Google Cloud (2023-24)Serverless computing with Google Cloud (2023-24)
Serverless computing with Google Cloud (2023-24)wesley chun
11 views33 slides
Mini-Track: AI and ML in Network Operations Applications by
Mini-Track: AI and ML in Network Operations ApplicationsMini-Track: AI and ML in Network Operations Applications
Mini-Track: AI and ML in Network Operations ApplicationsNetwork Automation Forum
10 views24 slides

Recently uploaded(20)

TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f... by TrustArc
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...
TrustArc11 views
"Running students' code in isolation. The hard way", Yurii Holiuk by Fwdays
"Running students' code in isolation. The hard way", Yurii Holiuk "Running students' code in isolation. The hard way", Yurii Holiuk
"Running students' code in isolation. The hard way", Yurii Holiuk
Fwdays17 views
Serverless computing with Google Cloud (2023-24) by wesley chun
Serverless computing with Google Cloud (2023-24)Serverless computing with Google Cloud (2023-24)
Serverless computing with Google Cloud (2023-24)
wesley chun11 views
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N... by James Anderson
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
James Anderson92 views
STKI Israeli Market Study 2023 corrected forecast 2023_24 v3.pdf by Dr. Jimmy Schwarzkopf
STKI Israeli Market Study 2023   corrected forecast 2023_24 v3.pdfSTKI Israeli Market Study 2023   corrected forecast 2023_24 v3.pdf
STKI Israeli Market Study 2023 corrected forecast 2023_24 v3.pdf
Future of AR - Facebook Presentation by ssuserb54b561
Future of AR - Facebook PresentationFuture of AR - Facebook Presentation
Future of AR - Facebook Presentation
ssuserb54b56115 views
HTTP headers that make your website go faster - devs.gent November 2023 by Thijs Feryn
HTTP headers that make your website go faster - devs.gent November 2023HTTP headers that make your website go faster - devs.gent November 2023
HTTP headers that make your website go faster - devs.gent November 2023
Thijs Feryn22 views
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors by sugiuralab
TouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective SensorsTouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective Sensors
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors
sugiuralab21 views
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLive by Network Automation Forum
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLiveAutomating a World-Class Technology Conference; Behind the Scenes of CiscoLive
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLive
Powerful Google developer tools for immediate impact! (2023-24) by wesley chun
Powerful Google developer tools for immediate impact! (2023-24)Powerful Google developer tools for immediate impact! (2023-24)
Powerful Google developer tools for immediate impact! (2023-24)
wesley chun10 views

Assimilating Self-Driving Cars Into Society: Travel Impacts & Transport Policy Choices

  • 2. Self-driving cars are game changers.  Revolution or Evolution....  Where do you think we are?  A lot can happen in 13 years…
  • 3. 1900: 5th Ave NYC Easter Parade Spot  the car!
  • 4. 1913: 5th Ave NYC Easter Parade Source: George Grantham Bain Collection Spot the  horse!
  • 6. Opportunities for CAVs  U.S. Safety  In 2014, 6.0 million crashes in the U.S. resulting in 32,675 deaths &  >$500+ billion in comprehensive costs.  Driver error is primary cause of > 90% of U.S. crashes.  40% of fatal crashes involve alcohol, drugs, fatigue &/or distraction.   AVs can dramatically impact safety by reducing human errors.  U.S. Congestion  7 billion hours of delay & $160 billion  losses in 2014.  Reductions possible via traffic smoothing, tighter headways,  cooperative adaptive cruise control (CACC) & fewer crashes.
  • 7. Opportunities (2)  Traveler Behaviors  Car‐sharing & ride‐sharing  Increased mobility for  elderly, disabled, & children?  Parking benefits  Latent & induced VMT  Freight Movement  Reduced labor & thus shipping costs  Improved fuel economies from tight‐headway drafting 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% Midnight 3:00 AM 6:00 AM 9:00 AM Noon 3:00 PM 6:00 PM 9:00 PM Midnight Vehs ≤ 10 yrs Vehs ≤ 15 yrs All vehs
  • 8. Part 1 What Are AVs Worth? - to Society & to Individual Owners
  • 9. Annual Per-AV Economic Impacts Assumed Market Share 10% 50% 90% Crashes Lives Saved 1,100 9,600 21,700 Economic Savings per AV per year $430 $770 $960 Comprehen. Savings per AV per yr $1,390 $2,480 $3,100 Congestion Travel Time Savings (M Hours) 756 1,680 2,770 Fuel Savings (M Gallons) 102 224 724 Savings per AV per year $1,320  $590  $550  Other Impacts Parking Savings per AV per year $250  $250  $250  VMT Increase 2.0% 7.5% 9.0% Change in Total # Vehicles ‐4.7% ‐23.7% ‐42.6% (U.S. Context, $2012)
  • 10. Totaled Social Benefits Assumed Market Share 10% 50% 90% Annual U.S. Savings: Economic Benefits Only $26 B $102 B $201 B Annual U.S. Savings: Comprehensive Benefits $38 B $211 B $447 B Savings Per AV per year: Econ. Benefits Only $2,000  $1,610  $1,760  Savings Per AV per year: Comprehen. Benefits $2,960  $3,320  $3,900  Net Present Value (NPV) of AV Benefits minus  Purchase Price (Econ. Benefits Only) $5,200 $7,250 $10,400 Net Present Value of AV Benefits minus Purchase  Price (Comprehensive Benefits) $12,500 $20,300  per AV sold $26,700 Added Purchase Price $10,000 $5,000 $3,000
  • 11. U.S. Industry Impacts, at 100% Adoption Industry Industry Size ($B/yr) Industry Impact ($B/yr) % Change in Industry $ per Capita per Year Insurance $180B/yr $108B/yr 60% $339/person/yr Freight Transportation $604 $100 17% $313 Land Development $931 $45 5% $142 Automotive $570 $42 7% $132 Personal Transport $86 $27 31% $83 Electronics & Software Technology $203 $26 13% $83 Auto Repair $58 $21 36% $66 Digital Media $42 $14 33% $44 Medical $2,700 $12 0% $36 Oil and Gas $284 $10 4% $31 Construction/Infrastructure $169 $8 4% $24 Traffic Police $10 $5 50% $16 Law $277 $3 1% $10 Industry-based Totals $6,113 $420B/year 7% $1,318/person/year
  • 12. Adding in Additional Effects: Travel Time “Productivity” Rises + Pain & Suffering from Crashes Fall Economy-Wide (non-Industry-based) Effects Economic Impact ($B/yr) $ per Capita per Year Productivity en Route $645 Billion/year $2,022/person-year Pain & Suffering + other Crash Costs $488 B/year $1,530 Additional Effects $1,133 B/year $3,552/person-year Overall Totals (industry + other) $1.4 Trillion per year! $4,419 per person-year
  • 13. Part 2 Forecasting Americans’ Long-Term Adoption of Connected & Autonomous Vehicle (C/AV) Technologies
  • 14. Willingness to Pay (WTP) Average  WTP Average WTP (if WTP > 0) % of Respondents  with $0 WTP Electronic Stability Control $52 $79 33.4% Lane Centering $205 $352 41.7% Left Turn Assist $119 $221 46.1% Cross Traffic Sensor $169 $252 32.8% Adaptive Headlight  $203 $345 41.1% Pedestrian Detect  $145 $232 37.5% Adaptive Cruise Control $126 $202 37.7% Blind Spot Monitoring $160 $210 23.7% Traffic Sign Recognition $93 $204 54.4% Emergency Automatic Braking  $183 $257 28.7% Level 3 Automation $2,438 $5,470 55.4% Self‐parking Valet System $436 $902 51.7% Level 4 Automation $5,857 $14,196 58.7% Connectivity (DSRC) $67 $111 39.1%
  • 15. Simulating Fleet Evolution Vehicle inventory Demographics Travel Patterns Technology evolution Transaction decision model (multinomial logit) Add technologies to old vehicles Sell a vehicle and buy vehicles Buy vehicles Sell a vehicle Add connectivity if WTP≥ Price Buy new or used? (Logit) LV4 WTP ≥ Price LV3 WTP ≥ Price Dispose of the oldest vehicle Add connectivity if WTP≥ Price Vehicle is already LV3 or LV4 End: Do nothing End: Dispose of the oldest vehicle New Used End: Add LV4 End: Add LV1, LV2, or self- parking valet if WTP≥ Price No End: Add LV3 No No Yes Yes Yes Same process for each household, every year.
  • 16. Predicted Shares of US Light-duty Vehicles 59.5% 83.5% 100.0% 100.0% 100.0% 100.0% 100.0% 0.0% 100.0% 0% 25% 50% 75% 100% 2015 2020 2025 2030 2035 2040 2045 DSRC‐based Connectivity 43.0% 43.8% 24.8% 43.4% 43.2% 70.7% 59.7% 0.0% 87.2% 0% 25% 50% 75% 100% 2015 2020 2025 2030 2035 2040 2045 Level 4 Automation
  • 17. Part 3 Agent-Based Models for Shared AVs + = &  Less than 20% of newer (& 15% of all) personal vehicles are in‐use at  peak times, even with 5‐minute pickup & drop‐off buffers.  Car‐sharing programs like ZipCar &  Car2go have expanded quickly,  with the number of U.S. users doubling every  year or two, over the  past decade.  Shared Autonomous Vehicles (SAVs) can help overcome car‐sharing  barriers, like return‐trip certainty &  vehicle access distances.
  • 18. Agent-Based Model Framework  Grid‐based 10 mi x 10 mi urban area with 0.25‐sq. mile zones.  Trip generation:  Poisson‐based PK & OP counts for trip generation, every 5 minutes.  Higher trip production & attraction rates closer to city center.  Mostly round‐trip travel, with 78% travelers returning via SAVs.  Random departure times & trip distances (2009 NHTS).  SAVs travel at fixed speeds, with 5 min. intervals. 0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 Midnight ‐ 3 AM 3 AM ‐ 6 AM 6 AM ‐ 9 AM 9 AM ‐ Noon Noon ‐ 3 PM 3 PM ‐ 6 PM 6 PM ‐ 9 PM 9 PM ‐ Midnight Trip Generation Trip Distances (mi.)Dwell Times (hrs.)
  • 19. Example: One SAV’s 24-hour Journey Higher AM Trip  Attraction Higher PM Trip  Attraction • Red Arrows SAV Relocation • Blue Arrows Serving Riders 5 mi 10 mi SE
  • 20. Case Study Results  100 days were simulated to assess SAV travel implications. Parameter Value Service area 10 mi. x 10 mi. Outer trip generation rate 9 trips/cell/day CBD edge trip generation rate 27 trips/cell/day CBD core trip generation rate 30 trips/cell/day Off‐peak speed 33 mph Peak speed 21 mph AM peak 7 AM ‐ 8 AM PM peak 4 PM ‐ 6:30 PM Trip share returning by SAV 78% Scenario Results  Each SAV replaced 9 to 13  conventional vehicles.  Avg. wait time ≈ 2.8 min.  11% new/induced (empty‐ vehicle) travel.  Yet 5% to 50% (GHG vs. VOCs)  life‐cycle emissions reductions,  thanks to smaller vehicles, fewer cold starts, & less  parking infrastructure!
  • 21. Part 4 What if SAVs Serve Central Austin, & Offer Dynamic Ride-Sharing (DRS)?
  • 23. Case Study Results  1:10 & 1:8 veh. replacement  rates (with & w/o DRS)  System pays for itself with  just $1/mile fares!  Electric vehicles (Leaf &  Model S) also tested (with  inductive charging), using  100 mi x 100 mi region.  DRS saves more emissions ‐ & VMT even falls (vs. BAU). Measure With DRS Without DRS SAV fleet size 1,855 2,181 Veh. replacement rate 9.95 8.47 Average wait time 57 sec 47 sec % Waiting > 10 min. 0.60% 0.33% 5‐6 PM avg. wait 3.0 min 2.4 min Avg. total trip time 14.4 min 13.8 min New VMT introduced 4.90% 7.92% # rides shared 5,754 0 % VMT shared 4.50% 0%  24‐hour days simulated with 56,300 to 270,000 trips served.  Excellent Level of Service (typ. wait time < 3 min.)
  • 24. Part 5 What if SAVs Serve the Entire Region? And Are SAElectricVs?
  • 25. Shared Autonomous Electric Vehicles SAEVs or
  • 26. Station Generation via 30-day Initial Run Check for  unmet  requests Find closest  SAEV SAEV has  range to meet  trip request? Unmet  request Send SAEV to  serve trip Yes t=t+1sec Next  timestep:  t=t+1sec No new  requests None  available Is a charging  station also in  range? No Create new  station at  vehicle’s  location No SAEV begins  charging SAEV heads  to closest  station SAEV removed  from  consideration Try again, in  next timestep Yes
  • 27. Charging Station Locations  Charging stations generated based on demand.   Number of charging stations formed is dependent only  on vehicle range.   Stations  formed for  200‐mile  range (left)  & 60‐mile  range  (right) 
  • 29. Austin SAEV Results Scenario Gas  SAV Short‐ Range  SAEV Long‐Range  Fast Charge Long‐ Range  SAEV Short‐Range  but Fast  Charge Long‐Range, Fast Charge,  Smaller Fleet Range (mi) 525 60 200 200 60 200 Recharge/Refuel Time (min) 2 240  30 240 30 30 # of Charging/Gas Stations 19 155 155 155 155 155 Fleet Size (# vehicles) 5,893 5,893 5,893 5,893 5,893 4,124 Avg. Daily miles per Vehicle 452 201 354 441 355 501 % of Unserved Trips 1.62 60.6 19.4 2.67 16.2 15.2 Avg. Daily Trips per Vehicle 28.5 11.4 23.4 28.2 24.3 35.1 Avg.  Wait Time Per Trip (min) 4.45 9.82 8.76 5.49 6.16 9.55 % Unoccupied Travel 6.05 13.1 7.88 6.86 14.2 8.62 % Travel for Charging 0.65 5.59 1.26 1.05 5.34 1.27 • Fleet size is key to lower response times. Tripling fleet size (from 9:1 to 3:1  travelers per SAEV) lowers average response times by >75%. • Longer charge times increase response times (& unserved trips rise 19% to 61%) • Longer ranges lower empty VMT, but fast‐charging improves response times. • Trips in Austin’s urban core are served best (e.g., never exceed 30‐min wait times).
  • 30. SAEV Cost Assumptions • Conventional BEV Costs: $25,000 (short range) to $35,000 (long‐range) • Self‐driving Technology Cost: $5,000 to $25,000 per vehicle • Battery Replacement: $100 ‐ $190 per kWh (once per vehicle life) • Vehicle Maintenance: 5.4¢ to ‐6.6¢ per mile • Insurance & Registration: $550 ‐ $2,200 per vehicle‐year • Electricity: 8¢ to 20¢ per kWh • Level II Chargers: $8,000 ‐ $18,000 each • Level II Charger Maintenance: $25 ‐ $50 per year, per charger • Fast (Level III) Charger: $10,000 ‐ $100,000 per charger • Fast Charger Maintenance: $1,000 ‐ $2,000 per year, per charger • Station Properties: $1,980 to $6,900 per vehicle space (based on location)
  • 31. Financial Results: Costs per Mile Mid‐Range Expected Costs per mile Gasoline  SAV Short‐ Range  SAEV Long‐ Range  SAEV Fast‐ Charge,  Long‐ Range SAEV Fast‐ Charge  SAEV Fast‐Charge,  Long‐Range  Reduced  Fleet Electricity/Fuel 6.39¢/mi 4.51 4.26 4.21 4.57 4.29 Vehicle Maint.,  Admin + Attendants 18.4¢/mi 19.7 18.6 18.4 19.9 18.7 Charger Costs (Land  + Infrastructure) n/a 3.57 1.35 2.15 6.30 0.76 Vehicle Purchase  19.6¢/mi 27.7 29.4 28.3 25.3 28.4 Battery Costs n/a 1.58 4.91 4.85 1.60 4.95 Total Costs per Mile 45¢/mi 59¢/mi 59¢/mi 59¢/mi 59¢/mi 59¢/mi Daily Vehicle Profit  ($1/mile fare) $234 /veh‐day $72 $132 $170 $126 $187 #Trips/vehicle‐day 28 trips /veh‐day 11 23 28 24 35 Response time/trip 4.4 min 9.8 8.8 5.5 6.2 9.6
  • 32. Part 6 How Should We Modify our Travel Demand Models & Plan for the Future?
  • 33. More Complete Model Assumptions  Vehicle ownership changes over time (AVs cost more & SAVs  allow people to avoid ownership).  Travel times are less burdensome (for drivers)  Lower values of travel time thanks to more productive (& restful!) in‐ vehicle activities  Affect trip mode choice probabilities  Travel costs may fall  AVs can head to lower‐cost parking locations  Shared AVs reduce overall vehicle‐use costs  Dynamic ride‐sharing reduces per‐trip costs even further  Link capacities rise on roadways  V2V communications (e.g., CACC) + smart intersections (long term)  AVs may eventually follow at shorter headways & distances  Hopefully lower travel times & travel‐time unreliability…
  • 34. However, we also expect…  Longer travel distances (more distant destinations).  More trip‐making by those presently unlicensed, with  disabilities &/or other difficulties driving.  Less air travel by passengers & rail travel by freight.  Possibly larger, less‐efficient vehicles, for longer‐distance  trips, & more land use sprawl. This means…  Rising congestion & infrastructure damage in many locations.  Need for smarter system management, including incentives  for ride‐sharing & non‐motorized travel, route guidance,  credit‐based congestion pricing & micro‐tolling ‐ to  internalize externalities & operate more efficiently, equitably,  & sustainably!
  • 35. In Conclusion…  CAVs offer tremendous benefits for mobility, safety & parking,  but will add VMT & congestion.  SAVs offer a new & exciting (transit?) mode, with each SAV  replacing ~8 personal vehicles, for same level of motorized trip‐ making.  SAVs add 7‐10% extra VMT (though DRS may reduce VMT).  Yet SAVs may bring useful travel‐cost savings, emissions benefits + profits for transit providers.  Traditional travel models cannot capture the details of SAV  systems & CAV operations. Microsimulation is needed.  Smart system management practices are also needed, to avoid  gridlock, sprawl, greater energy use, & other downsides.
  • 37. United States: Federal • National Highway Traffic Safety Administration (NHTSA)  preliminary policy on Automated Vehicles in 2013 – Outlined definitions for Levels 0 through 4 of automation • NHTSA in September 2016 issued new Policy on Autonomous  Vehicles  – Adopted SAE J3016 definitions (L0 through Level 5) as  their standard. • Deliberately issued as policy & not regulations, with goal to  set stage for consistent national framework but providing  flexibility to states.
  • 39. NHTSA’s Framework for Vehicle Performance Guidance
  • 40. U.S.: Federal (2) • NHTSA October 2016: Policy on Cyber Security in  Autonomous Vehicles – Covers all vehicles not just HAVs & applies to designers,  supplies, manufactures & modifiers • FAST Act 2015, §24302 limitations on data retrieved from  Event Data Recorders (EDRs) – NHTSA required to determine amount of time EDRs  should capture & record data for retrieval ... to provide  sufficient information to investigate a motor vehicle  crash
  • 41. U.S.: State‐level • Over 80 bills are currently in front of U.S. state legislatures on  this topic. • Nevada created legislation allowing testing in 2011. • California legislation authorized a pilot program in 2014. • Michigan: 2013 allowed testing of automated vehicles as long  as human was in car. • Michigan: 2016 allows driverless cars to be driven for any of the  following purposes, no human required to be in car: – Personal use; road testing; as part of a SAVE program or “on‐ demand automated vehicle network;” & as part of a platoon.
  • 42. California’s & Michigan’s approaches differ...  California: prescriptive approach  Required rulemaking by agencies, pilot tests must be  authorized, test vehicles do not require driver behind  wheel, but qualified test drivers must have ability to take  control, minimum insurance surety bond of $5 million.  Michigan: framework approach  Initially, Automakers can test AVs as long as human in car  in original legislation.  No agency rulemaking required.  Current legislation, allows driverless cars to be driven for  multiple  purposes not just road testing, without a human  in the vehicle as the AI is considered the driver. 
  • 43. Stats from California’s pilot..... • 17 testing permits (mainly Tier 1’s, OEMS & technology  manufacturers) • 26 traffic accidents involving HAVs (Google 22, Delphi 1, Cruise  1, GMCruise 1, Nissan 1) • Reported disengagements from automated mode between Dec  1, 2015 & Nov 30, 2016: – Bosch – 1442 – 982 miles driven(MD) – BMW – 1 – 638 MD – Delphi – 178 – 3125 MD – Ford – 3 – 590 MD  – Google – 465 – 1,060,199 MD – GM Cruise – 284  – 9970 MD – Nissan – 28 – 4,099 MD – Mercedes – 336 – 673 MD – Tesla – 182 – 530 MD https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/autonomousveh_ol316 https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/disengagement_report_2016
  • 44. European Union EU has not yet passed any legislation specifically on HAVs.   EU Directive 2007/46 EEC regulates how vehicles should be designed  & operated.   EU Roadworthiness Directive 2014/45 EU sets out basis for  roadworthiness.  Problems with the Vienna Convention on Road  Traffic Article 8’s  language stating ‘every driver shall at all times be able to control his  vehicle’ incidentally prevented the development & testing of HAVs.  Amendments to the Convention in 2016 allow drivers to take hands  off wheel in self‐driving cars. ECE Regulation 79 also creates an impediment through requirements  for specific steering configurations:  advanced driver steering system is only allowed to control steering as  long as the driver remains in primary control of vehicle at all times. 
  • 45. EU Member States  Finland, France, Germany, Netherlands, Sweden & UK  implemented legislation in 2015/2016   Finland, Netherlands & Sweden, all have similar  systems to  California’s legislation & regulations for  pilot tests, & for driver licensing.   UK issued code of  practice in July 2015, which must be  followed by any groups conducting HAV testing. This  includes licensing & training provisions, & a risk  management process by the testing group.    UK issued Vehicle Technology and Aviation Bill 2016‐ 2017 in February 2017 – outlines liability for insurers of  automated vehicles.
  • 46. Activities in Canada, Japan & Australia  Canada has not yet created federal regulation  Province of Ontario in 2016 produced legislation &  regulations for a pilot program  Japan has allowed road testing, & is working to  develop regulations  Australia has not federally legislated  National Transport Commission has set out  recommendations & policy positions in 2016  Government of New South Wales introduced legislation in  September 2015 for road testing.  NSW released a future  transport roadmap in fall 2016 that outlined the ministry’s  view on the transition to HAVs
  • 47. Initial Legal Issues  Privacy, Liability, Cybersecurity & Freedom of  Information Requests / State Open Records  Requests all raised as concerns for automated &  connected vehicles.  No case law yet on these issues.  NHTSA & FTC have noted they are reviewing  hacking & privacy of consumer data in HAVs.    Federal statutes also provide penalties under the  Computer Fraud and Abuse Act, Digital Millennium  Copyright Act, Wiretap Act, & Patriot Act. 
  • 48. Initial legal issues (2)  Privacy realm three areas have been identified  as needing changes to law: 1. Autonomy privacy (i.e. an individual’s privacy  under 4th amendment to the U.S. Constitution  e.g. illegal search & seizure);  2. Personal information privacy, and  3. Surveillance. • California passed law regarding consumer  privacy in HAVs
  • 49. Initial Conclusions  Many jurisdictions around the world have  begun to draft legislation & regulations with  a primary focus on pilot testing.   California has begun to review how it needs to  amend its laws & regulations.   Legal articles have primarily focused on  privacy, liability, cyber security &  constitutional protections.