ECONOMICS AND
RETROFIT
Maria BOSTENARU DAN, Diana MENDES
Overview
 Introduction
 The building typology
 Performance levels and seismic retrofit costs
 Building modelling
 Com...
Existing methods
 Urban scale
 At urban planning level there were Fingerhuth and Koch who clarified the
moderating role ...
The building typology
The RC skeleton building
typology in Europe
 Studies of seismic countries: Romania, Italy,
Greece, Slovenia, Portugal (fo...
The RC skeleton among typologies
in Bucharest, Romania
 Romanian housing typologies analysed (WHE&beyond)
 Historic buil...
Bucharest, Romania
Early RC skeleton
Building typology: Romania
 Impact of apartment buildings bigger than any
other housing
 Strong economy, private enterpr...
Romania
Building typology: Romania
Building typology: Romania
Elena Ottulescu
building,
architect Horia
Creangă, 1934-
35
Bedroom / night zone
Living room, i...
Building typology: Italy
 Two directions
 Rationalism (contextual Modernism)
 Giuseppe Terragni
 Novecento
 Decorativ...
Building typology: Italy
 Giuseppe Terragni - Como
Photos 2005
Italy
 Como
Building typology: Italy
 Giuseppe Terragni - Milano
Photos 2005
Italy
 Milano
 Rationalist architecture: blue
 Novecento architecture: red
Building typology: Italy
 Novecento
Photos 2007
Building typology: Italy
 Novecento
Photos 2007
Building typology: Italy
 Novecento
Building in Via
Domenichino, architects
Lancia şi Ponti
1928-30
Livingroom,dinning
B ...
Building typology: Greece
 1929 – ownership system for multistorey
apartments
 Housing in private hand, seen to be uniqu...
Building typology: Greece
Photos 2005
Greece
 Athens
Greece
Bedroom / night zone
Living room, including dinning
Corridors / circulation zone
Bathrooms, toillets
Kitchen
Hall /...
Slovenia
 Few reinforced concrete skeleton multi-family
housing
 Joze Plecnik built housing programmes
 The multi-famil...
Slovenia
 Plecnik
Plecnik
 In Austria
 skeleton
 photos 2005-2006
Slovenia
Portugal
 RC buildings in the north of the city, where
avenues were built in the interwar time
 Master Plan according to...
Portugal
Cassiano Branco (photos 2005)
Portugal
Middle-age
quarter
Alfama
Baixa quarter built after the
1755 earthquake
Haussmannian Boulevard
built before those...
Performance levels and seismic
retrofit costs
Performance levels and seismic
retrofit costs
 Inspiration from studies in the theory of
daylight in atria
 Depending on...
Formulas – principle of addition
Reparation of a column damaged till yield/crush =
48,16 x  + 1 x  + 270 x  + 10 x ...
The concept of cost curves
the derivation from the daylight shall be understood as follows: lets imagine a building consis...
Building modelling
Building modelling
 Study of the structural typology of early RC
 Report for the WHE (extended characteristics)
 Study ...
350mm
30mm
350mm
30mm
350mm
Steelbarsanchored
intotheconcrete
towhichthebracesarefixed
Computation methodology
Computation methodology
 Calculation using construction devices for „retrofit
elements“ for
 Retrofit measures
 Repair ...
Retrofit measure
Repair measure
Otpt No: 73 Time= 9,3360, spallig reached. Elm: Cb51ba. Unc Conc Strain = -0.002173 - G.p.(b)
Otpt No: 73 Time= 9,3360, sp...
Interdependence structural – socio-
economic
Otpt No: 73 Time= 9,3360, spallig reached. Elm: Cb51ba. Unc Conc Strain = -0....
After supervised work of Öztürk (2003)
Structural damage
Structural damage
 The method allows to count the damaged
elements, and thus the costs for the entire
building
 The meth...
crushingin
groundfloor
columns
spallingin
first floor
columns
spallingin
groundfloor
columnsNot retrofitted
Retrofitted wi...
Retrofit method EQ
fracture+crush+s
pall+crack
yield+crush+
spall+crack
crush+spall
+crack
yield+spall
+crack
spall+
crack...
Comparison of costs
Comparison of costs
 Done for
 Retrofit techniques (braces, jacketing, structural
wall, side walls) – seen earlier at %
...
Model
Retrofit
Earthquake1
Earthquake2
Reparation(€)
Retrofit(€)
Total(€)
Rebuild(€)
Reparation/
Rebuild
Retrofit/
Rebuild...
Model
Retrofit
Earthquake1
Earthquake2
Reparation(€)
Retrofit(€)
Total(€)
Rebuild(€)
Reparation/
Rebuild
Retrofit/
Rebuild...
From deterministic to
probabilistic
Monte-Carlo simulation – further study
Output for the decision system
Output for the decision system
 The costs have to be compared to the benefits;
benefits stay in first place
 Benefits ca...
Pairwise comparison method
Building ontology > IT
Urban ontology (COST TU0801
training school)
Sisi
Utility value method
Decision tree formulas
Total points = Summ (actor x weight of actor)
Actor = Summ (criteria x weight of criteria)
For crit...
Actors in
WHE
Architect
Civil engineer
Socio-economic
aspects
Proiect
management
Exemple of interwar building WHE
WHE
Fulfillment of criteria
Indicators in WHE
Taxonomy in progress
http://www.world-housing.net/gem-building-
taxonomy-testing-and-evaluation-create-a...
Morphology and economy
From the decision model to
3D model
3D model
http://arhitectura-1906.ro/2012/07/marcel-
iancu-si-alfabetul-sau-formal-un-exercitiu-
didactic-in-derulare-i/
Re...
3D model
http://arhitectura-1906.ro/2012/07/marcel-
iancu-si-alfabetul-sau-formal-un-exercitiu-
didactic-in-derulare-i/
Re...
Constructive logic and BIM
Outlook to further studies
Optimisation of the current study
 Taking the prices for hour work for the country from
where the typology and the measur...
Studies of implemented retrofit
measures
 Italy
 FRP (Torre delle Nazioni, Napolo)
 Seismic dissipators (school Fabrian...
Relationship to earlier RC
structures
 Pre-study of the distribution of predecessors in
Europe is already done
 Before R...
Relationship to timber
 Preliminary research on a language for
reinforced concrete from timber
 Lessons to be learned fr...
Computer games
 A method of training in the pre-disaster phase
might be computer games
 For the genre computer and manag...
Playing „World without End“
Construction and management games
Other decision systems
Drama theory and conflict based software
The economic value of retrofit/restoration versus
demoliti...
Restoration and demolition
game
Comparison to agent based
automated method
 Computer tools can aid local decision makers in
postearthquake disaster staff...
Conclusions
Conclusions
 An original methodology for computation of costs was
developed, based on available project management
method...
Acknowledgements
 COST action IS1104 for this Short Term Scientific Mission at
ISCTE-IUL Lisbon (March-April 2013)
 fell...
Economics and retrofit
Economics and retrofit
Economics and retrofit
Economics and retrofit
Economics and retrofit
Economics and retrofit
Economics and retrofit
Economics and retrofit
Economics and retrofit
Economics and retrofit
Economics and retrofit
Economics and retrofit
Economics and retrofit
Economics and retrofit
Economics and retrofit
Economics and retrofit
Upcoming SlideShare
Loading in …5
×

Economics and retrofit

461 views

Published on

Seminario ICEST IST Lisbon

Published in: Education, Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
461
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
92
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Economics and retrofit

  1. 1. ECONOMICS AND RETROFIT Maria BOSTENARU DAN, Diana MENDES
  2. 2. Overview  Introduction  The building typology  Performance levels and seismic retrofit costs  Building modelling  Computation methodology  Structural damage  Comparison of costs  Output for the decision system  Outlook to further studies
  3. 3. Existing methods  Urban scale  At urban planning level there were Fingerhuth and Koch who clarified the moderating role of the architect, among experts, passive public and active affected people.  At regional planning level it was Strassert (1995) developing a method of balancing we will later employ.  Building scale  Inclusion of the factor cost into multicriteria decision analysis has been done more recently by the team of Caterino et al (2007 and 2009), with a view to bracing of a reinforced concrete building, but employing passive damping.  For technical decision we built upon the book of Malczewski (1999) regarding spatial problems.  For the role of the architect Richter (course work) made a role model in the decision space between goals, resources, benefits and costs.  In renovation the model used in Weissenhof was described by Nägele (1992). Also Nägele (1992) employed balancing.  The ATC-40 considers a series of actors specifically for seismic retrofit. Both the latter employ matrixes (decision tables).  The role of the users were considered also by Ottokar Uhl in the model developed for the Hollabrunn in the 1970s, the glory time of participatism.
  4. 4. The building typology
  5. 5. The RC skeleton building typology in Europe  Studies of seismic countries: Romania, Italy, Greece, Slovenia, Portugal (for the first two including archives)  Studies of other countries presenting the typology: Poland, Bulgaria, France, Czech Republic, Estonia, Austria, Netherlands, Spain, Germany (the last two moderate seismicity; Germany is steel frame) and of Art Nouveau forerunners (Belgium, Romania, Hungary, Estonia, Finnland, Germany) see http://bostenaru.natkat.org/project_results/study_trips.html
  6. 6. The RC skeleton among typologies in Bucharest, Romania  Romanian housing typologies analysed (WHE&beyond)  Historic building with timbered balcony  „wagon“ house (single story brick row)  Two story brick masonry timber floor  Multistory brick masonry steel composite floor  RC skeleton (residential and mixed use)  RC skeleton with RC braces  Cast in situ RC structural walls (vulnerable and not)  Precast RC structural walls  Moment resisting RC frame multistorey (socialist)  Moment resisting RC frame low rise (post 1989)  RC skeleton most vulnerable
  7. 7. Bucharest, Romania Early RC skeleton
  8. 8. Building typology: Romania  Impact of apartment buildings bigger than any other housing  Strong economy, private enterprise  Deviations from mainstream movement dicated by the market  Condominium, like in Greece, until today  Double entrance  Ottulescu building: free plan in an apartment block
  9. 9. Romania
  10. 10. Building typology: Romania
  11. 11. Building typology: Romania Elena Ottulescu building, architect Horia Creangă, 1934- 35 Bedroom / night zone Living room, including dinning Corridors / circulation zone Bathrooms, toillets Kitchen Hall / vertical circulation Deposit / external circulation Legend:
  12. 12. Building typology: Italy  Two directions  Rationalism (contextual Modernism)  Giuseppe Terragni  Novecento  Decorative  Geometrical  Novecento: function bound housing typologies, condominium  Zoning: function groups, double entrance
  13. 13. Building typology: Italy  Giuseppe Terragni - Como Photos 2005
  14. 14. Italy  Como
  15. 15. Building typology: Italy  Giuseppe Terragni - Milano Photos 2005
  16. 16. Italy  Milano  Rationalist architecture: blue  Novecento architecture: red
  17. 17. Building typology: Italy  Novecento Photos 2007
  18. 18. Building typology: Italy  Novecento Photos 2007
  19. 19. Building typology: Italy  Novecento Building in Via Domenichino, architects Lancia şi Ponti 1928-30 Livingroom,dinning B athroom,toilets Kitchen Hall Corridors/ circulation zone Deposit B edroom/ Night zone
  20. 20. Building typology: Greece  1929 – ownership system for multistorey apartments  Housing in private hand, seen to be unique, but similar to Romania and Portugal  Training in Germany, little in France  zonation  Zaimi and Stournary street example: „ressemble Italian rationalism“ – to be investigated  Double entrance
  21. 21. Building typology: Greece Photos 2005
  22. 22. Greece  Athens
  23. 23. Greece Bedroom / night zone Living room, including dinning Corridors / circulation zone Bathrooms, toillets Kitchen Hall / vertical circulation Deposit / external circulation Legend: building on Zaimi and Stournari streets, architects Valentis and Michailidis, 1933 – 1934
  24. 24. Slovenia  Few reinforced concrete skeleton multi-family housing  Joze Plecnik built housing programmes  The multi-family housing by Plecnik can be found in Vienna (ex. Zacherl house)  Multi-family housing is mainly in brick  Ljubljana was reconstructed after the 1895 earthquake mainly with buildings of Art Nouveau; Modernism and RC came later
  25. 25. Slovenia  Plecnik
  26. 26. Plecnik  In Austria  skeleton  photos 2005-2006
  27. 27. Slovenia
  28. 28. Portugal  RC buildings in the north of the city, where avenues were built in the interwar time  Master Plan according to the 1933 Charter of Athens was done post-war  Traditional floor plans
  29. 29. Portugal Cassiano Branco (photos 2005)
  30. 30. Portugal Middle-age quarter Alfama Baixa quarter built after the 1755 earthquake Haussmannian Boulevard built before those in Paris
  31. 31. Performance levels and seismic retrofit costs
  32. 32. Performance levels and seismic retrofit costs  Inspiration from studies in the theory of daylight in atria  Depending on the expected earthquake, the measure can be more extensive or not  Adding a second window should be similar to adding a retrofit element and the distance to the amount
  33. 33. Formulas – principle of addition Reparation of a column damaged till yield/crush = 48,16 x  + 1 x  + 270 x  + 10 x + 25 x  + 1 x  (1) Reparation of a column damaged till reinforcement yield/concrete crush = 41,68 x  + 1 x  + 2 x  + 270 x  + 0,9 x + 2,4 x + 1 x + 0,75 x  (2) Reparation of a column damaged till spall = 22,67 x  + 0,33 x + 270 x  + 10 x + 25 x  + 0,33 x  (3) Reparation of a beam damaged till spall = 23,91 x  + 0,0572 x  + 0,8 x  + 0,009 x + 0,18 x  (4) Reparation of a column with rifts = 36,48 x  + 4,8 x  + 0,015 x + 4,8 x  (5) Reparation of a beam with rifts = 38 x + 6,75 x  + 0,015 x  + 6,75 x  (6) The formulas are based on the devices. The unknown depend on country and time as follows: -  is he hour salary, -  is the price for bringing away concrete, -  is the price for 1kg steel, -  is the price for scaffolding 1m², -  is the price for supporting the scaffolding 1m, -  is the preice for 1m³ concrete, -  is the price for a hole in the slab, -  is he price for 1m² plastering, - is the approximative price for injection materials, -  is the price for brining away the old plastering (1m³). Total reparation cost = reparation cost for yield/crush colum x nr. of yield crush/columns + Reparation cost for spall column x nr. of spall columns + Reparation cost for rifts colum x nr. of rifted colums + Reparation cost for yield/crush beam x nr. of yield/crush beams + Reparation cost for spall beam x nr. of spall beams + Reparation cost for rifts beam x nr. of rift beams While the numbers can be counted with the procedure shown before Total preventive retrofit costs = Costs for a measures device x nr. of elements Alternatively a project management software can be employed. Moment of the measure Extent of the measure Extent of the measure Costs Reparation Rebuilding Retrofit
  34. 34. The concept of cost curves the derivation from the daylight shall be understood as follows: lets imagine a building consisting of parallel bars. In this case the light comes through courtyards, and is decreased in the lower levels by shadows. To overcome this, a building with stepwise recesses in the height has been designed. Thus the courtyard in the ground floor is the tightest, while increasing in wideness with the height. Therefore the shadow decreases in the height and more natural light is received by the higher floors. However, for deep rooms even this natural light is not enough. To deal with the huge depth a second window was added, following the line of the next floor, which is set back. To optimize the light design the amount of setting back is different depending on floor, the second window is closer to the main one in the lower floor and further in the upper floors, where the natural light amount decreases deeper on. Transferred into our concept the window symbolizes the amount of the measure, by amount we understand the costs beared by a certain retrofit or repair intervention. The main window stays for repair and the additional one for retrofit. The deeper the floor is, the less effect the investment in repair has, because the damages are more extensive – the deeper floors correspond to stronger earthquakes, the less favourable situation. The “moment of the measure” stays for the earthquake we consider to set our measure targeted with, in German called “Bemessungsbeben” and which we can consider that the building shall be designed for in order to reach a certain performance level. The moment of the measure, although staying on the X axis is actually determined by the Y axis, namely if the curve shall be drawn for a lower or an upper story, which are the ones determined parametrically by the earthquake magnitude.
  35. 35. Building modelling
  36. 36. Building modelling  Study of the structural typology of early RC  Report for the WHE (extended characteristics)  Study of planimetry to identify typology of distribution of spans and bays in a skeleton  Modelling in the software  Building  Retrofit measures
  37. 37. 350mm 30mm 350mm 30mm 350mm Steelbarsanchored intotheconcrete towhichthebracesarefixed
  38. 38. Computation methodology
  39. 39. Computation methodology  Calculation using construction devices for „retrofit elements“ for  Retrofit measures  Repair measures after earthquake damage, depending on damage degree (the software allowed to apply the retrofit method on a predamaged element)  Computed following performance criteria available in fibre based software  Option for use of Project Management software (considering all costs transformed in time)  Calculation using surfaces for rebuilding the building in case of total damage  Use of MS Excell forms  Option for use of new BIM software (2011)
  40. 40. Retrofit measure
  41. 41. Repair measure
  42. 42. Otpt No: 73 Time= 9,3360, spallig reached. Elm: Cb51ba. Unc Conc Strain = -0.002173 - G.p.(b) Otpt No: 73 Time= 9,3360, spallig reached. Elm: Cb2051a. Unc Conc Strain = -0.002116 - G.p.(b) Otpt No: 73 Time= 9,3360, spallig reached. Elm: C2031a. Unc Conc Strain = -0.002198 - G.p.(b) Otpt No: 73 Time= 9,3360, yield reached. Elm: C11bb. Steel Strain = 0.002502 - G.p.(a) Otpt No: 73 Time= 9,3360, yield reached. Elm: C2011a. Steel Strain = 0.002633 - G.p.(b) Otpt No: 73 Time= 9,3360, fracture reached. Elm: C2011b. Steel Strain = 0.069858 - G.p.(a) Otpt No: 73 Time= 9,3360, fracture reached. Elm: C2011b. Steel Strain = 0.109096 - G.p.(b) Otpt No: 73 Time= 9,3360, crush reached. Elm: C2011b. Conf Conc Strain = -0.007241 - G.p.(a) Otpt No: 73 Time= 9,3360, crush reached. Elm: C2011b. Conf Conc Strain = -0.04781 - G.p.(b) Otpt No: 73 Time= 9,3360, yield reached. Elm: C5011b. Steel Strain = 0.005749 - G.p.(a) Typical log-file output Otpt No: Time= reached Elm: Mat 1 Mat 2 Strain = Gauss point 1 0.1500, crack_cover bmz3412. Unc Conc 0.000107 G.p.(b) 1 0.1500, crack_core bmz2511. Conf Conc 0.000101 G.p.(a) 1 0.1500, crack_cover bmz2511. Unc Conc 0.000113 G.p.(a) 1 0.1500, crack_core bmz2512. Conf Conc 0.000108 G.p.(b) 1 0.1500, crack_cover bmz2512. Unc Conc 0.000122 G.p.(b) 1 0.1500, crack_cover bmz4411. Unc Conc 0.000101 G.p.(a) 1 0.1500, crack_cover bmz4412. Unc Conc 0.000109 G.p.(b) 1 0.1500, crack_core bmz3511. Conf Conc 0.000104 G.p.(a) 1 0.1500, crack_cover bmz3511. Unc Conc 0.000116 G.p.(a) 1 0.1500, crack_core bmz3512. Conf Conc 0.000111 G.p.(b) Log-file output imported in MS Excell ID Otpt No: Time= reached Elm: Mat 1 Mat 2 Strain = Gauss point 1 1 0.1500, crack_cover bmz3412. Unc Conc 0.000107 G.p.(b) 2 1 0.1500, crack_core bmz2511. Conf Conc 0.000101 G.p.(a) 3 1 0.1500, crack_cover bmz2511. Unc Conc 0.000113 G.p.(a) 4 1 0.1500, crack_core bmz2512. Conf Conc 0.000108 G.p.(b) 5 1 0.1500, crack_cover bmz2512. Unc Conc 0.000122 G.p.(b) 6 1 0.1500, crack_cover bmz4411. Unc Conc 0.000101 G.p.(a) 7 1 0.1500, crack_cover bmz4412. Unc Conc 0.000109 G.p.(b) 8 1 0.1500, crack_core bmz3511. Conf Conc 0.000104 G.p.(a) 9 1 0.1500, crack_cover bmz3511. Unc Conc 0.000116 G.p.(a) 10 1 0.1500, crack_core bmz3512. Conf Conc 0.000111 G.p.(b) Log-file imported in MS Access Gesamtsumme von ID yield crush spall crack_core crack_cover element 15 4 1 2 4 4 bmx121 14 4 2 4 4 bmx122 14 4 2 4 4 bmx133 14 4 2 4 4 bmx141 14 4 2 4 4 bmx142 10 2 4 4 bmx152 10 2 4 4 bmx153 10 2 4 4 bmx154 8 4 4 bmx161 8 4 4 bmx162 MS Access query
  43. 43. Interdependence structural – socio- economic Otpt No: 73 Time= 9,3360, spallig reached. Elm: Cb51ba. Unc Conc Strain = -0.002173 - G.p.(b) Otpt No: 73 Time= 9,3360, spallig reached. Elm: Cb2051a. Unc Conc Strain = -0.002116 - G.p.(b) Otpt No: 73 Time= 9,3360, spallig reached. Elm: C2031a. Unc Conc Strain = -0.002198 - G.p.(b) Otpt No: 73 Time= 9,3360, yield reached. Elm: C11bb. Steel Strain = 0.002502 - G.p.(a) Otpt No: 73 Time= 9,3360, yield reached. Elm: C2011a. Steel Strain = 0.002633 - G.p.(b) Otpt No: 73 Time= 9,3360, fracture reached. Elm: C2011b. Steel Strain = 0.069858 - G.p.(a) Otpt No: 73 Time= 9,3360, fracture reached. Elm: C2011b. Steel Strain = 0.109096 - G.p.(b) Otpt No: 73 Time= 9,3360, crush reached. Elm: C2011b. Conf Conc Strain = -0.007241 - G.p.(a) Otpt No: 73 Time= 9,3360, crush reached. Elm: C2011b. Conf Conc Strain = -0.04781 - G.p.(b) Otpt No: 73 Time= 9,3360, yield reached. Elm: C5011b. Steel Strain = 0.005749 - G.p.(a) Typical log-file output Otpt No: Time= reached Elm: Mat 1 Mat 2 Strain = Gauss point 1 0.1500, crack_cover bmz3412. Unc Conc 0.000107 G.p.(b) 1 0.1500, crack_core bmz2511. Conf Conc 0.000101 G.p.(a) 1 0.1500, crack_cover bmz2511. Unc Conc 0.000113 G.p.(a) 1 0.1500, crack_core bmz2512. Conf Conc 0.000108 G.p.(b) 1 0.1500, crack_cover bmz2512. Unc Conc 0.000122 G.p.(b) 1 0.1500, crack_cover bmz4411. Unc Conc 0.000101 G.p.(a) 1 0.1500, crack_cover bmz4412. Unc Conc 0.000109 G.p.(b) 1 0.1500, crack_core bmz3511. Conf Conc 0.000104 G.p.(a) 1 0.1500, crack_cover bmz3511. Unc Conc 0.000116 G.p.(a) 1 0.1500, crack_core bmz3512. Conf Conc 0.000111 G.p.(b) Log-file output imported in MS Excell ID Otpt No: Time= reached Elm: Mat 1 Mat 2 Strain = Gauss point 1 1 0.1500, crack_cover bmz3412. Unc Conc 0.000107 G.p.(b) 2 1 0.1500, crack_core bmz2511. Conf Conc 0.000101 G.p.(a) 3 1 0.1500, crack_cover bmz2511. Unc Conc 0.000113 G.p.(a) 4 1 0.1500, crack_core bmz2512. Conf Conc 0.000108 G.p.(b) 5 1 0.1500, crack_cover bmz2512. Unc Conc 0.000122 G.p.(b) 6 1 0.1500, crack_cover bmz4411. Unc Conc 0.000101 G.p.(a) 7 1 0.1500, crack_cover bmz4412. Unc Conc 0.000109 G.p.(b) 8 1 0.1500, crack_core bmz3511. Conf Conc 0.000104 G.p.(a) 9 1 0.1500, crack_cover bmz3511. Unc Conc 0.000116 G.p.(a) 10 1 0.1500, crack_core bmz3512. Conf Conc 0.000111 G.p.(b) Log-file imported in MS Access Gesamtsumme von ID yield crush spall crack_core crack_cover element 15 4 1 2 4 4 bmx121 14 4 2 4 4 bmx122 14 4 2 4 4 bmx133 14 4 2 4 4 bmx141 14 4 2 4 4 bmx142 10 2 4 4 bmx152 10 2 4 4 bmx153 10 2 4 4 bmx154 8 4 4 bmx161 8 4 4 bmx162 MS Access query
  44. 44. After supervised work of Öztürk (2003)
  45. 45. Structural damage
  46. 46. Structural damage  The method allows to count the damaged elements, and thus the costs for the entire building  The method also allows to localise the damaged elements
  47. 47. crushingin groundfloor columns spallingin first floor columns spallingin groundfloor columnsNot retrofitted Retrofitted with side walls
  48. 48. Retrofit method EQ fracture+crush+s pall+crack yield+crush+ spall+crack crush+spall +crack yield+spall +crack spall+ crack yield+ crack crack only None 1977 0,98 8,5 0 47,1 0 18,3 25,16 1986 0 0,7 0 19,9 1,0 1,0 77,45 1990, 1 0 0 0 0 0 0 65,7 1990, 2 0 0 0 0 2,0 7,2 88,6 1977+1977 3,27 14,05 0 45,75 0 16,01 20,92 1977+1986 0,98 9,15 0 44,12 0 19,93 25,82 1977+1990,2 0,98 9,15 0 44,44 0 19,28 26,14 1986+1990,1 0 3,92 0 17,32 1,63 9,74 47,39 Th.+Th. 0 0 0 0 0,98 0 97,71 Metal jacketing 1977 0 9,2 0 50,7 0,0 19,0 30,39 1986 0 2,6 0 20,9 2,0 28,8 45,75 1990, 1 0 0 0 0 0 0 66,3 Thessaloniki 0 0 0 0 0,98 0 97,71 Side walls 1986 0 0 1,2 0 0,6 0 62,3 1990, 1 0 0 0 0 0 0 64,0 1990, 2 0 0 0 0 0,6 0,3 88,3 Thessaloniki 0 0 0 0 1,75 0 96,78 1977+1977 0,58 10,53 0 63,16 0 10,53 15,2 1977+1986 0,88 8,19 0 50 0 19,93 21,64 1977+1990,1 0,88 8,19 0 39,47 0 13,45 31,87 1977+1990,2 0,88 9,06 0 38,89 0 16,67 28,65 1986+1977 0 4,09 0 16,08 0,29 23,1 48,83 1986+1977 0 7,02 0 53,8 0,29 18,13 20,76 Diagonal braces 1986 0 0 0 0 0 0 64,05 1990,1 0 0 0 0 0 0 54,25 1990,2 0 0 0 0 0 0 85,62 Structural wall 1990,1 0 0 0 0 0 0 56,36 1990,2 0 0 0 0 0,3 0 77,24
  49. 49. Comparison of costs
  50. 50. Comparison of costs  Done for  Retrofit techniques (braces, jacketing, structural wall, side walls) – seen earlier at %  Retrofit strategies (amount and position of braces)  Compared for different earthquakes  Compared with rebuild  Computed the savings done in repair costs by applying the retrofit before the earthquake, or before a second earthquake
  51. 51. Model Retrofit Earthquake1 Earthquake2 Reparation(€) Retrofit(€) Total(€) Rebuild(€) Reparation/ Rebuild Retrofit/ Rebuild Total/ Rebuild Total/ Rebuild-0,30 Reparation/ RetrofitRetrofit/ Reparation Differenceto notretrofitted (€) Reparation saving/ retrofit retrofit/ Reparation saving Gregor - 1977 - 406968 0 406968 3195391 0,13 0,00 0,13 -0,17 - 0 - - - Gregor - 1986 - 432952 0 432952 3195391 0,14 0,00 0,14 -0,16 - 0 - - - Gregor - 1990,1 - 271407 0 271407 3195391 0,08 0,00 0,08 -0,22 - 0 - - - Gregor - 1990,2 376411 0 376411 3195391 0,12 0,00 0,12 -0,18 - 0 - - - Gregor - 1977 1977 430400 0 430400 3195391 0,13 0,00 0,13 -0,17 - 0 - - - Gregor - 1977 1986 398150 0 398150 3195391 0,12 0,00 0,12 -0,18 - 0 - - - Gregor - 1977 1990,1 0 0 3195391 0,00 0,00 0,00 -0,30 - - - - - Gregor - 1977 1990,2 401200 0 401200 3195391 0,13 0,00 0,13 -0,17 - 0 - - - Gregor - 1986 1977 0 0 3195391 0,00 0,00 0,00 -0,30 - - - - - Gregor Metal jacket 1977 - 445586 55152 500738 3195391 0,14 0,02 0,16 -0,14 8 0,12377395 38619 1 1 Gregor Metal jacket 1986 - 324031 55152 379183 3195391 0,10 0,02 0,12 -0,18 6 0,17020591 -108921 -2 -1 Gregor Metal jacket 1990,1 273885 55152 329037 3195391 0,09 0,02 0,10 -0,20 5 0,20136897 2479 0 22 Gregor Metal jacket Thessaloniki 408750 55152 463902 3195391 0,13 0,02 0,15 -0,15 7 0,13492844 0 - Gregor Sidewalls 1986 299336 102960 402296 3195391 0,09 0,03 0,13 -0,17 3 0,34396188 -133616 -1 -1 Gregor Sidewalls 1990,1 295488 102960 398448 3195391 0,09 0,03 0,12 -0,18 3 0,34844055 24081 0 4 Gregor Sidewalls 1990,2 411170 102960 514130 3195391 0,13 0,03 0,16 -0,14 4 0,25040768 34759 0 3 Gregor Sidewalls Thessaloniki 457050 102960 560010 3195391 0,14 0,03 0,18 -0,12 4 0,22527076 0 - Gregor Sidewalls 1977 1977 513400 102960 616360 3195391 0,16 0,03 0,19 -0,11 5 0,20054538 83000 1 1 Gregor Sidewalls 1977 1986 452600 102960 555560 3195391 0,14 0,03 0,17 -0,13 4 0,22748564 54450 1 2 Gregor Sidewalls 1977 1990,1 438650 102960 541610 3195391 0,14 0,03 0,17 -0,13 4 0,23472016 438650 4 0 Gregor Sidewalls 1977 1990,2 426400 102960 529360 3195391 0,13 0,03 0,17 -0,13 4 0,24146341 25200 0 4 Gregor Sidewalls 1986 1977 458350 102960 561310 3195391 0,14 0,03 0,18 -0,12 4 0,22463183 458350 4 0 Gregor Braces 1986 - 264600 87624 352224 3195391 0,08 0,03 0,11 -0,19 3 0,33115646 -168352 -2 -1 Gregor Braces 1990,1 - 224100 87624 311724 3195391 0,07 0,03 0,10 -0,20 3 0,39100402 -47307 -1 -2 Gregor Braces 1990,2 - 353700 87624 441324 3195391 0,11 0,03 0,14 -0,16 4 0,24773537 -22711 -0 -4 Gregor Structural wall 1990,1 - 251100 103622 354722 3195391 0,08 0,03 0,11 -0,19 2 0,41267224 -20307 -0 -5 Gregor Structural wall 1990,2 - 345950 103622 449572 3195391 0,11 0,03 0,14 -0,16 3 0,29952883 -30461 -0 -3
  52. 52. Model Retrofit Earthquake1 Earthquake2 Reparation(€) Retrofit(€) Total(€) Rebuild(€) Reparation/ Rebuild Retrofit/ Rebuild Total/ Rebuild Total/ Rebuild-0,30 Reparation/ Retrofit Retrofit/ Reparation Differenceto notretrofitted (€) Reparation saving/ retrofit retrofit/ Reparation saving Özzi 1977- 506950 0 506950 3123067 0,16 0,00 0,16 -0,14 - 0- 1977 1977 526850 0 526850 3123067 0,17 0,00 0,17 -0,13 - 0- Thessaloniki - 422000 0 422000 3123067 0,14 0,00 0,14 -0,16 - 0- Thessaloniki Thessaloniki 423050 0 423050 3123067 0,14 0,00 0,14 -0,16 - 0- Özzi Braces 1 1977- 544400 74785 619185 3123067 0,17 0,02 0,20 -0,10 7 0,1373719 0 0 6236566 1977 1977 595400 74785 670185 3123067 0,19 0,02 0,21 -0,09 8 0,12560507 0 0 3407139 Thessaloniki - 422000 74785 496785 3123067 0,14 0,02 0,16 -0,14 6 0,17721626 0 0 - Thessaloniki Thessaloniki 479850 74785 554635 3123067 0,15 0,02 0,18 -0,12 6 0,15585133 0 0 4111961 Özzi Braces 2 1977- 553050 67987 621037 3123067 0,18 0,02 0,20 -0,10 8 0,1229303 46100 1 1 1977 1977 605250 67987 673237 3123067 0,19 0,02 0,22 -0,08 9 0,11232813 78400 1 1 Thessaloniki - 67987 67987 3123067 0,00 0,02 0,02 -0,28 0 - -422000 -6 -0 Thessaloniki Thessaloniki 478800 67987 546787 3123067 0,15 0,02 0,18 -0,12 7 0,14199373 55750 1 1 Özzi Braces 3 1977- 580950 67987 648937 3123067 0,19 0,02 0,21 -0,09 9 0,11702659 74000 1 1 1977 1977 606650 67987 674637 3123067 0,19 0,02 0,22 -0,08 9 0,1120689 79800 1 1 Thessaloniki - 473900 67987 541887 3123067 0,15 0,02 0,17 -0,13 7 0,14346191 51900 1 1 Thessaloniki Thessaloniki 476700 67987 544687 3123067 0,15 0,02 0,17 -0,13 7 0,14261926 53650 1 1 Özzi Braces 4 1977- 455100 135973 591073 3123067 0,15 0,04 0,19 -0,11 3 0,29877653 -51850 -0 -3 1977 1977 596400 135973 732373 3123067 0,19 0,04 0,23 -0,07 4 0,22798994 69550 1 2 Thessaloniki - 345850 135973 481823 3123067 0,11 0,04 0,15 -0,15 3 0,39315657 -76150 -1 -2 Thessaloniki Thessaloniki 408900 135973 544873 3123067 0,13 0,04 0,17 -0,13 3 0,33253412 -14150 -0 -10 Özzi Braces 5 1977- 176765 176765 3123067 0,00 0,06 0,06 -0,24 0 - -506950 -3 -0 1977 1977 586250 176765 763015 3123067 0,19 0,06 0,24 -0,06 3 0,3015184 59400 0 3 Thessaloniki - 176765 176765 3123067 0,00 0,06 0,06 -0,24 0 - -422000 -2 -0 Thessaloniki Thessaloniki 476700 176765 653465 3123067 0,15 0,06 0,21 -0,09 3 0,37081007 53650 0 3 Özzi - 1990,1- 333461 0 333461 2808021 0,12 0,00 0,12 -0,18 - 0 Özzi - 1990,2- 389594 0 389594 2808021 0,14 0,00 0,14 -0,16 - 0
  53. 53. From deterministic to probabilistic Monte-Carlo simulation – further study
  54. 54. Output for the decision system
  55. 55. Output for the decision system  The costs have to be compared to the benefits; benefits stay in first place  Benefits can be compared among different retrofit techniques and strategies, or compared to the status quo (no measure)  Comparison was done with two out of four identified methods:  Pairwise comparison (costs are ranked numerically)  Utility value method (costs enter the measurement spaces of some criterions)
  56. 56. Pairwise comparison method
  57. 57. Building ontology > IT
  58. 58. Urban ontology (COST TU0801 training school) Sisi
  59. 59. Utility value method
  60. 60. Decision tree formulas Total points = Summ (actor x weight of actor) Actor = Summ (criteria x weight of criteria) For criteria: - Zero value - Graphic of variation of criteria
  61. 61. Actors in WHE Architect Civil engineer Socio-economic aspects Proiect management
  62. 62. Exemple of interwar building WHE WHE
  63. 63. Fulfillment of criteria
  64. 64. Indicators in WHE Taxonomy in progress http://www.world-housing.net/gem-building- taxonomy-testing-and-evaluation-create-a- report-using-taxt
  65. 65. Morphology and economy From the decision model to 3D model
  66. 66. 3D model http://arhitectura-1906.ro/2012/07/marcel- iancu-si-alfabetul-sau-formal-un-exercitiu- didactic-in-derulare-i/ Revista Arhitectura Marcel Janco morphogenesis exercise • E-card.ro – Marcel Janco urban traces with sketches of buildings • http://www.e-cart.ro/asociatia/ro/noutati/Traseu_urban_M.Iancu.pdf
  67. 67. 3D model http://arhitectura-1906.ro/2012/07/marcel- iancu-si-alfabetul-sau-formal-un-exercitiu- didactic-in-derulare-i/ Revista Arhitectura Marcel Janco morphogenesis exercise • Outgoing Mondrian painting here • http://www.wikipainting s.org/en/piet- mondrian/lozenge- composition-with-red- gray-blue-yellow-and- black-1925
  68. 68. Constructive logic and BIM
  69. 69. Outlook to further studies
  70. 70. Optimisation of the current study  Taking the prices for hour work for the country from where the typology and the measures are (not always available; despite of flexible computation mean)  Making the computed curves to meet the one from the concept  Optimisation of measures for a given earthquake in order to make right computations  Employment also of probabilistic means to extend from the study cases to larger urban base  Comparison to the retrofit costs for a real building (soon envisaged through contact to offices; already done for stone masonry)
  71. 71. Studies of implemented retrofit measures  Italy  FRP (Torre delle Nazioni, Napolo)  Seismic dissipators (school Fabriano)  Romania  Cutting of the corner <> new planimetry  Jacketing  Greece  Combined methods of FRP for horizontal elements and jacketing for vertical elemens (Army Pension Fund building, hotel in northern Greece)
  72. 72. Relationship to earlier RC structures  Pre-study of the distribution of predecessors in Europe is already done  Before RC skeleton the Hennebique system was spread (after it was RC frame)  Differences and common features have to be put in connection
  73. 73. Relationship to timber  Preliminary research on a language for reinforced concrete from timber  Lessons to be learned from half-timbered housing for reinforced concrete  A similar study of geografic distribution of half- timbered construction  Study of the bracing method for retrofit  Local seismic culture in reinforced concrete bracing  Computations for steel  Realised projects with dissipators
  74. 74. Computer games  A method of training in the pre-disaster phase might be computer games  For the genre computer and management games there is an economic component, which can be derived from this research  At urban scale: SimCity, also involving in the early phases disaster scenarios such as 1906 San Francisco Earthquake  For building scale, see the games following the Ken Follett novels  Abstractisation of needed materials and people
  75. 75. Playing „World without End“ Construction and management games
  76. 76. Other decision systems Drama theory and conflict based software The economic value of retrofit/restoration versus demolition: - Collaborative and competitive computer games
  77. 77. Restoration and demolition game
  78. 78. Comparison to agent based automated method  Computer tools can aid local decision makers in postearthquake disaster staff. Fiedrich (2004) proposed the integrative model EQ-RESQUE to support the prioritisation of intervention zones and the efficient allocation of help-and- rescue resources through action proposals. A distributed simulation system (high level architecture) connects its two interacting components:  simulation of the dynamic disaster environment and of the work of resources;  decision process modelling using software agents mathematically optimised with expert knowledge concerning the multiple tasks and the communication structures and decision competences within the disaster staff.
  79. 79. Conclusions
  80. 80. Conclusions  An original methodology for computation of costs was developed, based on available project management methods and software possibilities  The method is aplicable for the single building (type)  The building typology under study represents heritage across Europe in seismic and non-seismic countries  An orginal concept of costs levels depending on expected earthquake was developed  It shows the value of planned conservation  The costs have been put in the context of decision of experts and larger participation in conservation efforts, part of which retrofit is
  81. 81. Acknowledgements  COST action IS1104 for this Short Term Scientific Mission at ISCTE-IUL Lisbon (March-April 2013)  fellowship in frame of the DFG funded Research Training Network 450 “Natural Disasters” at the Universität Karlsruhe (TH), Germany (2000-2003)  Marie Curie Early Stage Research Host Fellowship, contract HPMT-CT-2001-00359, at the Istituto Universitario di Studi Superiori di Pavia, Italy (2002-2003)  Marie Curie Intra-European Fellowship, contract MEIF-CT- 2005-009765, same host institution as above (2005-2007)  Marie Curie European Reintegration Grant, contract MERG- CT-2007-200636, at Foundation ERGOROM ´99, Bucharest, Romania (2007-2010)

×