Javaedge 2010-cschalk


Published on

  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Javaedge 2010-cschalk

  1. 1. Google Cloud Computing for Java Developers: Platform and MonetizationChris Schalk  TheEdge 2010 Google Developer Advocate  Tel Aviv, Israel  Dec 16th, 2010 
  2. 2. Google Cloud Platform Technologies at GlanceExisFng  Google App Engine  Google App Engine for Business (new)  New!  Google   Google BigQuery  Predic0on API  Google Storage 
  3. 3. Agenda•  Part I - Intro to App Engine •  App Engine Details •  Development Tools •  App Engine for Business •  Apps Monetization – Apps Marketplace• Part II – Google’s new cloud technologies •  Google Storage •  Prediction API •  BigQuery
  4. 4. Part I – Intro to App EngineTopics covered•  App Engine a PaaS•  App Engine usage/customers•  App Engine Technical Details
  5. 5. Google App EngineBuild your own applications in Googles cloud
  6. 6. Cloud Computing as Gartner Sees It SaaS  PaaS  IaaS  Source: Gartner AADI Summit Dec 2009  6 
  7. 7. Why Google App Engine? • Easy to build • Easy to maintain • Easy to scale 7
  8. 8. By the Numbers 150,000+ ac0ve  apps on a weekly  basis  8 8
  9. 9. By the Numbers 100,000+  developers use  every month  9 9
  10. 10. By the Numbers1B+ daily pageviews  10 10
  11. 11. Some App Engine Partners 11 
  12. 12. App Engine Details 12
  13. 13. Cloud Development in a Box•  Downloadable SDK•  Application runtimes •  Java, Python•  Local development tools •  Eclipse plugin, AppEngine Launcher•  Specialized application services•  Cloud based dashboard•  Ready to scale•  Built in fault tolerance, load balancing 13
  14. 14. Specialized Services Memcache  Datastore  URL Fetch  Mail  XMPP  Task Queue  Images  Blobstore  User Service 14 
  15. 15. Language Runtimes Duke, the Java mascot  Copyright © Sun Microsystems Inc., all rights reserved. 15 
  16. 16. Ensuring Portability16 
  17. 17. Extended Language support through JVM •  Java •  Scala •  JRuby (Ruby) •  Groovy •  Quercus (PHP) •  Rhino (JavaScript) Duke, the Java mascot  Copyright © Sun Microsystems Inc., all rights reserved.  •  Jython (Python)17 
  18. 18. Always free to get started•  ~5M pageviews/month•  6.5 CPU hrs/day•  1 GB storage•  650K URL Fetch calls/day•  2,000 recipients emailed•  1 GB/day bandwidth•  100,000 tasks enqueued•  650K XMPP messages/day 18
  19. 19. Application Platform Management19 
  20. 20. App Engine Dashboard20 
  21. 21. Development Tools for App Engine21 
  22. 22. Google Plugin for Eclipse 22 
  23. 23. SDK Console23 
  24. 24. Two+ years in review Apr 2008 Python launch May 2008 Memcache, Images API Jul 2008 Logs export Aug 2008 Batch write/delete Oct 2008 HTTPS support Dec 2008 Status dashboard, quota details Feb 2009 Billing, larger files Apr 2009 Java launch, DB import, cron support, SDC May 2009 Key-only queries Jun 2009 Task queues Aug 2009 Kindless queries Sep 2009 XMPP Oct 2009 Incoming email Dec 2009 Blobstore Feb 2010 Datastore cursors, Appstats Mar 2010 Read policies, IPv6 May 2010 App Engine for Business Jun 2010 Task queue increases, Python pre-compilation… Jul 2010 Mapper API Aug 2010 Multi-tenancy, hi perf img serving, custom err pages Oct 2010 Instances Console, Delete Kind/App Data24 
  25. 25. App Engine 1.4 Release New Features1. Channel API   Allows for Server Push (Comet) to browser   ‐ hXp:// 2. Always On 3. Warm Up Requests  –  Enabled by default for Java apps  –  Can turn off in appengine‐web.xml via: <warmup‐requests‐ enabled>false</warmup‐requests‐enabled> 
  26. 26. App Engine 1.4 Release New Features4. Hard Limit Updates  –  No more 30 second limit for background work ‐> up to 10 minutes  –  Response size limits for URLFetch have been raised from 1MB to 32MB  –  Memcache batch get/put can now also do up to 32MB requests  –  Image API requests and response size limits have been raised from 1MB to 32MB  –  Mail API outgoing aXachments have been increased from 1MB to 10MB 
  27. 27. Other Upcoming Features …but you can try out early versions now! 1. Mapper API   First component of App Engine’s MapReduce toolkit  •  hXp://‐mapreduce/  –  Large scale data manipulaFon  –  Examples include:  •  Report generaFon  •  CompuFng staFsFcs and metrics …  – Java Example:  •  hXp://‐the‐java‐mapper‐framework‐for‐app‐engine/  •  Google “sqlreduce”   –  hXp:// 2. Matcher API   –  Matcher allows an app to register a set of queries to match against a stream of documents. For every  document presented, matcher will return the ids of all the registered queries that match the document.   – Trusted tester program announced in App Engine forum  –  Java support coming, but sFll Python only for now 
  28. 28. Introducing App Engine for Business App Engine for BusinessSame scalable cloud platform, but designed for the Enterprise 28
  29. 29. Google App Engine for Business Details•  Enterprise application management –  Centralized domain console (preview available)•  Enterprise reliability and support Google App Engine –  99.9% Service Level Agreement for Business –  Direct support•  Hosted SQL –  Relational SQL database in the cloud (preview available)•  SSL on your domain•  Extremely Secure by default –  Integrated Single Sign On (SSO)•  Pricing that makes sense –  Apps cost $8 per user, up to $1000 max per month29 
  30. 30. Enterprise App Development with Google Buy from others Buy from Google Build your own Google Apps Google Apps Google App Engine Marketplace for Business for Business Enterprise Application Platform Enterprise Firewall  Enterprise Data  AuthenFcaFon  Enterprise Services  User Management 30 
  31. 31. App Engine for Business Roadmap Enterprise Administration Preview (signups available) Console Direct Support Preview (signups available) Hosted SQL Preview (signups available) Service Level Agreement Available Q4 2010 (Draft published) Enterprise billing Available Q4 2010 Custom Domain SSL Limited Release EOY 201031 
  32. 32. App Engine ResourcesGet started with App Engine• up on App Engine for Business and become a trusted tester•• <- sign up!
  33. 33. Enough technology.. How do you monetize your apps?
  34. 34. Apps Monetization – Apps Marketplace hXp:// 
  35. 35. Add your Apps to the Marketplace!  Your Apps! SaaS  PaaS  IaaS 3535 
  36. 36. Apps Monetization – Apps Marketplace for Developers hXp:// 
  37. 37. App Engine Demos•  App Engine/Java •  Getting started•  App Engine for Business •  Domain Console •  SQL •  Guestbook on SQL on GAE4B •  SQLReduce
  38. 38. Part II - Google’s new Cloud TechnologiesTopics covered•  Google Storage for Developers•  Prediction API (machine learning)•  BigQuery
  39. 39. Google Storage for Developers Store your data in Googles cloud
  40. 40. What Is Google Storage?•  Store your data in Googles cloud  o  any format, any amount, any Fme •  You control access to your data  o  private, shared, or public •   Access via Google APIs or 3rd party tools/libraries 
  41. 41. Sample Use CasesStatic content hostinge.g. static html, images, music, videoBackup and recoverye.g. personal data, business recordsSharinge.g. share data with your customersData storage for applicationse.g. used as storage backend for Android, AppEngine, Cloud based appsStorage for Computatione.g. BigQuery, Prediction API
  42. 42. Google Storage Benefits High Performance and Scalability         Backed by Google infrastructure   Strong Security and Privacy          Control access to your data Easy to Use Get started fast with Google & 3rd party tools 
  43. 43. Google Storage Technical Details•  RESTful API   o  Verbs: GET, PUT, POST, HEAD, DELETE   o  Resources: identified by URI  o  Compatible with S3  •  Buckets   o  Flat containers  •  Objects   o  Any type  o  Size: 100 GB / object •  Access Control for Google Accounts   o  For individuals and groups  •  Two Ways to Authenticate Requests   o  Sign request using access keys   o  Web browser login
  44. 44. Performance and Scalability•  Objects of any type and 100 GB / Object•  Unlimited numbers of objects, 1000s of buckets•  All data replicated to multiple US data centers•  Utilizes Googles worldwide network for data delivery•  Only you can use bucket names with your domain names•  Read-your-writes data consistency•  Range Get
  45. 45. Some Early Google Storage Adopters 
  46. 46. Google Storage - Availability•  Preview in US currently o  100GB free storage and network from Google per account o  Sign up for waitlist at storage/•  Note: Non US preview available on case-by-case basis • (for Storage, BigQuery, Prediction)
  47. 47. Google Storage - Pricingo  Storage   $0.17/GB/Month o  Network   Upload - $0.10/GB   Download   $0.15/GB Americas / EMEA   $0.30/GB  APAC o  Requests   PUT, POST, LIST - $0.01 / 1000 Requests   GET, HEAD - $0.01 / 10000 Requests
  48. 48. Demo•  Tools: o  GS Manager o  GSUtil•  Upload / Download
  49. 49. Google Prediction APIGoogles prediction engine in the cloud
  50. 50. Introducing the Google Prediction API•  Googles sophisticated machine learning technology•  Available as an on-demand RESTful HTTP web service
  51. 51. How does it work?  "english"  The quick brown fox jumped over the lazy The Prediction API dog. finds relevantfeatures in the "english"  To err is human, but to really foul things up sample data during you need a computer. training. "spanish"  No hay mal que por bien no venga.  "spanish"  La tercera es la vencida. The PredicFon API  ?  To be or not to be, that is the quesFon. later searches for those features  ?  La fe mueve montañas. during predicFon. 
  52. 52. A virtually endless number of applicaFons... Customer TransacFon  Species  Message  DiagnosFcs Sentiment Risk  IdenFficaFon  RouFng  Churn  Legal Docket  Suspicious  Work Roster  Inappropriate PredicFon  ClassificaFon  AcFvity  Assignment  Content Recommend  PoliFcal  Uplit  Email  Career  Products  Bias  MarkeFng  Filtering  Counselling  ... and many more ... 
  53. 53. Using the Prediction APIA simple three step process...  Upload your training data to  1. Upload  Google Storage   Build a model from your data  2. Train  3. Predict  Make new predicFons 
  54. 54. Step 1: Upload  Upload your training data to Google Storage •  Training data: outputs and input features•  Data format: comma separated value format (CSV) "english","To err is human, but to really ..."  "spanish","No hay mal que por bien no venga."  ... Upload to Google Storage  gsutil cp ${data} gs://yourbucket/${data}
  55. 55. Step 2: Train Create a new model by training on data To train a model:POST prediction/v1.1/training?data=mybucket%2FmydataTraining runs asynchronously. To see if it has finished:GET prediction/v1.1/training/mybucket%2Fmydata{"data":{ "data":"mybucket/mydata", "modelinfo":"estimated accuracy: 0.xx"}}}
  56. 56. Step 3: Predict  Apply the trained model to make predicFons on new data POST prediction/v1.1/query/mybucket%2Fmydata/predict{ "data":{ "input": { "text" : [ "Jaime X! Cest le meilleur" ]}}}
  57. 57. Step 3: Predict Apply the trained model to make predicFons on new data POST prediction/v1.1/query/mybucket%2Fmydata/predict{ "data":{ "input": { "text" : [ "Jaime X! Cest le meilleur" ]}}}{ data : { "kind" : "prediction#output", "outputLabel":"French", "outputMulti" :[ {"label":"French", "score": x.xx} {"label":"English", "score": x.xx} {"label":"Spanish", "score": x.xx}]}}
  58. 58. Step 3: Predict Apply the trained model to make predicFons on new data An example using Python import httplibheader = {"Content-Type" : "application/json"}#...put new data in JSON format in params variableconn = httplib.HTTPConnection("")conn.request("POST", "/prediction/v1.1/query/mybucket%2Fmydata/predict”, params, header)print conn.getresponse()
  59. 59. Prediction API CapabilitiesData•  Input Features: numeric or unstructured text•  Output: up to hundreds of discrete categoriesTraining•  Many machine learning techniques•  Automatically selected•  Performed asynchronouslyAccess from many platforms:•  Web app from Google App Engine•  Apps Script (e.g. from Google Spreadsheet)•  Desktop app
  60. 60. Prediction API v1.1 - features•  Updated Syntax•  Multi-category prediction o  Tag entry with multiple labels•  Continuous Output o  Finer grained prediction rankings based on multiple labels•  Mixed Inputs o  Both numeric and text inputs are now supportedCan combine continuous output with mixed inputs
  61. 61. Prediction API Demos•  Creating training data – recipes.csv•  Simple REST access •  Training the prediction engine •  Start predicting!•  A Java Web example
  62. 62. Google BigQueryInteractive analysis of large datasets in Googles cloud
  63. 63. Introducing Google BigQuery•  Googles large data adhoc analysis technology o  Analyze massive amounts of data in seconds•  Simple SQL-like query language•  Flexible access o  REST APIs, JSON-RPC, Google Apps Script
  64. 64. Why BigQuery?  Working with large data is a challenge 
  65. 65. Many Use Cases ...  InteracFve Tools  Trends  Spam DetecFon  Web Dashboards  Network  OpFmizaFon 
  66. 66. Key CapabiliFes of BigQuery  •  Scalable: Billions of rows •  Fast: Response in seconds •  Simple: Queries in SQL •  Web Service o  REST o  JSON-RPC o  Google App Scripts
  67. 67. Using BigQueryAnother simple three step process...  Upload your raw data to  1. Upload  Google Storage   Import raw data into BigQuery table  2. Import  3. Query  Perform SQL queries on table 
  68. 68. Writing QueriesCompact subset of SQL o  SELECT ... FROM ... WHERE ... GROUP BY ... ORDER BY ... LIMIT ...;Common functions o  Math, String, Time, ...Statistical approximations o  TOP o  COUNT DISTINCT
  69. 69. BigQuery via RESTGET /bigquery/v1/tables/{table name}GET /bigquery/v1/query?q={query}Sample JSON Reply:{ "results": { "fields": { [ {"id":"COUNT(*)","type":"uint64"}, ... ] }, "rows": [ {"f":[{"v":"2949"}, ...]}, {"f":[{"v":"5387"}, ...]}, ... ] }}Also supports JSON-RPC
  70. 70. Security and PrivacyStandard Google Authentication•  Client Login•  OAuth•  AuthSubHTTPS support•  protects your credentials•  protects your dataRelies on Google Storage to manage access
  71. 71. Large Data Analysis ExampleWikimedia Revision History Wikimedia Revision history data from: hXp://‐latest‐pages‐meta‐history.xml.7z 
  72. 72. Using BigQuery Shell Python DB API 2.0 + B. Clappers sqlcmd
  73. 73. BigQuery from a Spreadsheet
  74. 74. BigQuery from a Spreadsheet
  75. 75. Further info available at: •  Google Storage for Developers o•  Prediction API o•  BigQuery o
  76. 76. Recap •  Google App Engine o  Google’s PaaS cloud development platform •  Google App Engine for Business o  New enterprise version of App Engine •  Google Storage o  New high speed data storage on Google Cloud •  Prediction API o  New machine learning technology able to predict outcomes based on sample data •  BigQuery o  New service for Interactive analysis of very large data sets using SQL
  77. 77. Q&A
  78. 78. Thank You!Chris SchalkGoogle DeveloperAdvocate