High-Capacity Optical Access Networks

1,009 views

Published on

Jacklyn Dias Reis – Aveiro University

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,009
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
37
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

High-Capacity Optical Access Networks

  1. 1. Jacklyn D. Reis, PhD CPqD, Campinas, São Paulo, Brazil 27-28 May 2013 Day 2 High-Capacity Optical Access Networks © 2005, it - instituto de telecomunicações. Todos os direitos reservados. Jacklyn D. Reis, PhD Ali Shahpari, Ricardo Ferreira, Darlene M. Neves, Mário Lima, António L. Teixeira University of Aveiro, Instituto de Telecomunicações
  2. 2. Next Generation PONs Internet data traffic has been continuously increasing Next generation PONs have been investigated to – support several users with bit rates of 1 to 100 Gb/s – flexible, extended reach and reduced cost 2 Source: Cisco, 2012 27-28 May 2013, Campinas, Brazil Tb/s, 100 km, 1000 users R. Yadav, "Passive-Optical-Network- (PON-) Based Converged Access Network [Invited]," J. Opt. Commun. Netw. 4(11), B124-B130 (2012). http://www.opticsinfobase.org/figure.cfm?uri=jocn-4-11-B124-g004
  3. 3. Outline 1. Future Optical Access Networks: Coherent WDM-PON – architectures – transceiver configuration – fiber impairments 2. Convergence Scenarios I. UDWDM III. Nyquist II. Convergence 3 2. Convergence Scenarios – WDM and XG-PON, G-PON, TWDM or Video 3. High-Capacity PON – Nyquist shaped WDM-PON under different capacities 27-28 May 2013, Campinas, Brazil
  4. 4. 4 FUTURE OPTICAL ACCESS NETWORKS PART I 27-28 May 2013, Campinas, Brazil
  5. 5. Ultra-Dense WDM based Passive Optical Networks Goal up to 1000 users at 1Gb/s (up/down) in a single ODN Allocate 1000 users efficiently? Narrow channel spacing; coherent detection; advanced modulation formats; Benefits High wavelength selective High receiver sensitivity Simple users’ data rate upgrade DSP eases implementation of equalizers / FEC I. UDWDM III. Nyquist II. Convergence 5 DSP eases implementation of equalizers / FEC Challenges Architecture Transceiver configuration Fiber effects 27-28 May 2013, Campinas, Brazil
  6. 6. UDWDM: Architectures Fully transparent: Splitter – Homogeneous network: coherent channels only – Heterogeneous network: coherent + IMDD channels Hybrid: AWG + splitter Filtered: AWG I. UDWDM III. Nyquist II. Convergence 6 27-28 May 2013, Campinas, Brazil
  7. 7. Homogeneous ODN only one technology; Heterogeneous ODN convergence scenarios; CW laser source modulated via an optical IQ modulator fed with random symbols; Transmission through Standard Single-Mode Fiber; 1:N Transparent Power Splitter ONU: Direct Detection or Coherent Rx UDWDM: Transceiver Configurations I. UDWDM III. Nyquist II. Convergence 7 ONU: Direct Detection or Coherent Rx 27-28 May 2013, Campinas, Brazil
  8. 8. UDWDM: Fiber Impairments Fully transparent UDWDM-PON (3.125 GHz grid): Splitter a) Homogeneous network: coherent channels only b) Heterogeneous network: coherent + legacy (NRZ or Video) I. UDWDM III. Nyquist II. Convergence 8 27-28 May 2013, Campinas, Brazil
  9. 9. 32x625 Mbaud @ 3.125 GHz Volterra Series to estimate FWM / XPM in coherent UDWDM-PON MPSK: SPM/XPM negligible; FWM is dominant MQAM: FWM and XPM are dominant; FWM I. UDWDM III. Nyquist II. Convergence 9 J.D. Reis et al JLT’2012(30), 234-241 27-28 May 2013, Campinas, Brazil FWM+XPM
  10. 10. Different Channel Count QPSK minimal variation with distance FWM increases up to 32 channels support 1000 users limited to ~5 Gb/s 16/256QAM higher dependence on distance XPM increases further than 32 channels support ~10-25 Gb/s per user limited to ~64 users I. UDWDM III. Nyquist II. Convergence 10 27-28 May 2013, Campinas, Brazil
  11. 11. 11 CONVERGENCE SCENARIOS PART II 27-28 May 2013, Campinas, Brazil
  12. 12. Coexistence with XG-PON / RF Video Overlay Fully transparent UDWDM-PON (3.125 GHz grid): Splitter a) Homogeneous network: coherent channels only b)Heterogeneous network: coherent + legacy (NRZ or Video) I. UDWDM III. Nyquist II. Convergence 12 27-28 May 2013, Campinas, Brazil
  13. 13. UDWMD-PON + Legacy PONs 16x1.25 Gb/s-QPSK spaced by 3.125 GHz plus 10 Gb/s NRZ or RF Video I. UDWDM III. Nyquist II. Convergence 13 27-28 May 2013, Campinas, Brazil UDWDM Comb OSA 10G NRZ Fiber Coherent Rx DSP IMDD Rx Video
  14. 14. Coexistence with XG-PON SSF simulations accurate up to 16.5 dBm 10G-NRZ Power≤10 dBm FWM between QPSK (-3 dBm/ch) 10G-NRZ Power>10 dBm XTalk due NRZ (XPM and possibly FWM) EVM2 or 1/SNR P2 (2 dB higher every 1 dB of power) I. UDWDM III. Nyquist II. Convergence 14 27-28 May 2013, Campinas, Brazil
  15. 15. Coexistence with XG-PON Fixed 10G-NRZ Power (15 dBm) with variable guard band Nonlinear Xtalk decreases for GB≥1.6 nm (~200 GHz) I. UDWDM III. Nyquist II. Convergence 15 27-28 May 2013, Campinas, Brazil
  16. 16. Coexistence with Video overlay Video Power≤10 dBm FWM between QPSK (-3 dBm/ch) Video Power>10 dBm XTalk due Video (XPM and possibly FWM) EVM2 or 1/SNR P2 (2 dB higher every 1 dB of power) I. UDWDM III. Nyquist II. Convergence 16 27-28 May 2013, Campinas, Brazil
  17. 17. Coexistence with Video overlay Fixed Video Power (16.5 dBm) with variable guard band Nonlinear Xtalk decreases for GB>2 nm (~250 GHz) I. UDWDM III. Nyquist II. Convergence 17 27-28 May 2013, Campinas, Brazil
  18. 18. Does UDWDM impact on the other technologies? IMDD based* I. UDWDM III. Nyquist II. Convergence 18 RF Video** *GLOBECOM’11, **OFC’13 27-28 May 2013, Campinas, Brazil
  19. 19. 19 HIGH-CAPACITY PON PART III 27-28 May 2013, Campinas, Brazil
  20. 20. “Terabit+ (192××××10 Gb/s) Nyquist Shaped UDWDM Coherent PON with Upstream and Downstream over a 12.8 nm Band”, OFC’13, PDP5B3 Previous work N. Cvijetic et al “1.92Tb/s coherent DWDM- OFDMA-PON with no high-speed ONU-side electronics over 100km SSMF and 1:64 passive split”, Optics Express, 19(24), 2011. I. UDWDM III. Nyquist II. Convergence 20 passive split”, Optics Express, 19(24), 2011. 48 Gb/s per wavelength ~16 nm (2 THz) In this work 80 Gb/s – 120 Gb/s per channel group ~13 nm (1.6 THz) Nyquist shaped UDWDM over DWDM 27-28 May 2013, Campinas, Brazil
  21. 21. I. UDWDM III. Nyquist II. Convergence How to go further in density keep the ODN budget? Spectral efficiency ~3 GHz optical band / user Mitigation of back-reflections OM2A6 – “Spectral Shaping for Mitigating Backreflections in a Bidirectional 10 Gbit/s Coherent WDM-PON” by D. Lavery; M. Paskov; S.J. Savory Mitigation of FWM 2BB 21 …… 27-28 May 2013, Campinas, Brazil 2BB
  22. 22. Mitigation of Back-Reflections 8x10G down + 8x10G up configuration (6.25 GHz): interleaved by 3.125 GHz I. UDWDM III. Nyquist II. Convergence 22 27-28 May 2013, Campinas, Brazil
  23. 23. Mitigation of FWM 16 16QAM channels at 3.125 GHz I. UDWDM III. Nyquist II. Convergence 23 27-28 May 2013, Campinas, Brazil
  24. 24. Outline Coherent UDWDM-PON setup Nyquist shaped optical spectra I. UDWDM III. Nyquist II. Convergence 24 Experimental results 5 Gb/s per channel or user 10 Gb/s per channel or user Conclusions 27-28 May 2013, Campinas, Brazil
  25. 25. Experimental setup Bi-directional Nyquist Shaped 16QAM UDWDM over DWDM (100 GHz) I. UDWDM III. Nyquist II. Convergence 25 27-28 May 2013, Campinas, Brazil UDWDM Comb OSA Fiber Coherent Rx DSP AWG DRTO DWDM Upstream MZM
  26. 26. Optical Spectra: UDWDM Nyquist Shaped 12x10 Gb/s at 5 GHz 14x10 Gb/s at 3.125 GHz 16x5 Gb/s at 2.5 GHz I. UDWDM III. Nyquist II. Convergence 26 27-28 May 2013, Campinas, Brazil
  27. 27. EVM: 5 Gb/s per channel Sensitivity -35 dBm (single), -30 dBm (UDWDM) Optimum power 40 km -10 dBm (1 UDWDM), -15 dBm (16 UDWDM) I. UDWDM III. Nyquist II. Convergence 27 27-28 May 2013, Campinas, Brazil
  28. 28. EVM: 5 Gb/s per channel EVM per channel at optimum power for the 1550 nm UDWDM channel group I. UDWDM III. Nyquist II. Convergence 28 27-28 May 2013, Campinas, Brazil
  29. 29. BER: 5 Gb/s per channel Power margin around 10 dB I. UDWDM III. Nyquist II. Convergence 29 27-28 May 2013, Campinas, Brazil
  30. 30. EVM: 10 Gb/s per channel Sensitivity -32 dBm (single), -27 dBm (UDWDM) Optimum power 40 km -11 dBm (1 UDWDM), -14 dBm (16 UDWDM) I. UDWDM III. Nyquist II. Convergence 30 27-28 May 2013, Campinas, Brazil
  31. 31. EVM: 10 Gb/s per channel EVM per channel at optimum power for the 1550 nm UDWDM channel group I. UDWDM III. Nyquist II. Convergence 31 27-28 May 2013, Campinas, Brazil
  32. 32. BER: 10 Gb/s per channel I. UDWDM III. Nyquist II. Convergence 32 27-28 May 2013, Campinas, Brazil
  33. 33. Conclusions Coherent detection plays an important role on Future Optical Access Networks Coherent Optical solutions better exploit the full capacity of OANs Convergence 33 Convergence Simple bandwidth upgrade Optical filter-free ONUs T/Rx Sensitivity symmetric and dedicated bandwidth Performance optimization Advanced modulations Digital Signal Processing Advanced filtering 27-28 May 2013, Campinas, Brazil
  34. 34. Acknowledgements Funding NG-PON2: ADI 30370 34 Collaborators 27-28 May 2013, Campinas, Brazil
  35. 35. Implementation of Nyquist Shaping Implementation – 4096 16QAM random symbols 16392 bits (Gray Coding) – 10 GSa/s 1.25 Gbaud (8 Samples per symbol, 32784 samples) – 10 GSa/s 2.5 Gbaud (4 Samples per symbol, 16392 samples) – Roll-off factor 0 – Pre-emphasis filter: 1st Gaussian ~3 GHz 35 27-28 May 2013, Campinas, Brazil

×