Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Amplification, ROADM and Optical Networking activities at CPqD

1,035 views

Published on

Published in: Technology
  • Be the first to comment

Amplification, ROADM and Optical Networking activities at CPqD

  1. 1. Amplification, ROADM and Optical Networking activities at CPqD Miquel Garrich Alabarce, PhD. Senior Researcher – Optical Technologies Division WTON – Campinas – May 28th 2015
  2. 2. 2/23 Outline Optical Technologies Division • Optical networks team Amplification • Automated amplifier characterizer • Field calibration procedure for distributed Raman amplifiers Reconfigurable Optical Add/Drop Multiplexer (ROADM) • Transient response issues in cascaded WSS-based ROADMs SDN-based dual-optimization application • Adaptive EDFA algorithm • Global WSS equalization algorithm Collaboration activities with UTD • Estimating EDFA Output Power with an Efficient Numerical Modeling Framework • Network-wide signal power control strategies in WDM networks
  3. 3. 3/23 Optical Technologies Division at CPqD Technological Trends Transmission and Networks Product Technologies Microelectronics Integrated Photonics Transmission DSP Access Amplification ROADM Networks Hardware Software Firmware Tests Mechanics Requirements Front End Back End Design Alignment Packaging Systems S Y S T E M S D E V I C E STransport Optical networks team
  4. 4. 4/23 Optical networks team 1 - Alexandre Daoud de Andrade 2 - Anderson Bravalheri 3 - Benjamin Sarti 4 - Camila de Araujo Souto Diniz 5 - Heitor Silva Carvalho 6 - João Carlos Sampaio Januário 7 - Leonardo Fagundes Luz Serrano 8 - Matheus Smythe Svolenski 9 - Miquel Garrich Alabarce 10 - Uiara Celine de Moura
  5. 5. 5/23 Motivation Bandwidth variable transponders (BVTs) Reconfigurable optical add-drop multiplexers (ROADMs) Wavelength selective switches (WSSs) Elastic optical networking (EON) Inputs 1 2 3 Drops Adds Outputs 1 2 3 EDFA Splitter WSS
  6. 6. 6/23 Input power Outputpower Measuredparam. Power mask Aux Amp Variable Att WSS Splitter 50/50 Optical switch OSA 40-CW laser bank Serial GPIB GPIB USB Ethernet Amplifier Automated amplifier characterizer
  7. 7. 7/23 Field calibration procedure for distributed Raman amplifiers Distributed counter-propagated Raman amplifier Sumbitted to International Microwave and Optoelectronics Conference (IMOC) 2015
  8. 8. 8/23 ROADM activities Rx Tx Reconfigurable optical add-drop multiplexer (ROADM) • Wavelength selective switch (WSS) • Optical channel monitor (OCM)
  9. 9. 9/23 Transient response issues in cascaded ROADMs Higher threshold Lower threshold Target power Transient Failure Convergence Failure Iteration: • Get information • Calculation • Application Operation: • Simultaneous • Independent
  10. 10. 10/23 Transient response feedback control mechanism Three analyzed controllers 1. Integrative (I) 2. Proportional, integrative and derivative (PID) 3. Proportional double integrative (PII) Techniques to enhance the performance of the controllers 1. Threshold levels 2. Standard deviation (STD) • trigger the actuation on WSS 𝐶I 𝑠 = 𝑘𝑖 𝑠 𝑢[z+1]=𝑢[z]+𝑘1∙𝑒[z] 𝐶PID 𝑠 = 𝑘 𝑝 + 𝑘𝑖 𝑠 + 𝑘 𝑑 ∙ 𝑠 𝑢[z+1]=𝑢[z]+𝑘1∙𝑒[z]+ 𝑘2∙𝑒[z−1]+𝑘3∙𝑒[z−2] 𝐶PII 𝑠 = 𝑘 𝑝 + 𝑘𝑖1 𝑠 + 𝑘𝑖2 𝑠 + 𝛼 𝑢[z+1]=𝑘1∙𝑢[z]+𝑘2∙𝑢[z−1]+𝑘3∙𝑒[z]+ 𝑘4∙𝑒[z−1]+𝑘5∙𝑒[z−2]
  11. 11. 11/23 Node Transient response simulation analysis Exhaustive approach: Full analysis with all controllers and the enhanced techniques Node IterationsTransient[dB] Number of controllers analyzed: 1. I: 70 2. PID: 4096 3. PII: 4096 1 2 3 4 5 6 7 8 0 2 4 6 1 2 3 4 5 6 7 8 0 3 6 9 12 15 17 I PID PII ISTD PIDSTD PIISTD I PID PII ISTD PIDSTD PIISTD Iteration: • Get information • Calculation • Application
  12. 12. 12/23 Experimental setup • 100km links • Two EDFA per link and per direction • 80 continuous wave lasers • 128Gb/s DP-QPSK channels (at 50GHz) Node 1 Node 2 Node 3 Node 4 Node 5 WSS cardsKEY: EDFA cards SOM/SOD cards Eth. switches 100-km SMF spans ROADM node • SDN controller • EDFA gain configuration • lightpath establishment • NETCONF protocol
  13. 13. 13/23 Iterations Transient response experimental results Demonstration the overshoot problem for an I controller (ki = 0.4) without STD enhance technique 5 10 15 20 25 30 -6 -2 2 6 I (sim) I (exp) 5 10 15 20 25 30 -6 -1 4 9 12 I (sim) I (exp) Iterations Node4Node8 Power[dBm]Power[dBm]
  14. 14. 14/23 Iterations Transient response experimental results Dynamic power response of the PII controller (kp= 0.05; ki1= 0.1; ki2=0.05) with STD enhance technique for overshoot suppression 5 10 15 20 25 30 -6 -4 -2 0 2 PIISTD (sim) PIISTD (exp) 5 10 15 20 25 30 -6 -4 -2 0 2 PIISTD (sim) PIISTD (exp) Node4Node8 Power[dBm]Power[dBm] Iterations Optical Fiber Communication Conference (OFC) March 2015
  15. 15. 15/23 Adaptive EDFA algorithm Input power Outputpower Measuredparam. Power mask Dual-optimization application Tx add ROADM 1 ROADM 3 drop Rx Pin Measurment Gain Search Given: SDN control Apply Gain ROADM 4ROADM 2
  16. 16. 16/23 Local equalization algorithm Dual-optimization application Tx add ROADM 1 ROADM 3 drop Rx ROADM 4ROADM 2 1.53 1.5351.54 1.5451.55 1.5551.56-50 -40 -30 -20 -10 0 10 Wavelength Power 1.53 1.535 1.54 1.545 1.55 1.555 1.56-60 -50 -40 -30 -20 -10 0 10 Wavelength Power 1.531.5351.541.5451.55 1.5551.56-60 -50 -40 -30 -20 -10 0 10 Wavelength Power ‘ 1.53 1.5351.54 1.5451.55 1.5551.56-50 -40 -30 -20 -10 0 10 Wavelength Power 1.53 1.5351.54 1.5451.55 1.5551.56-50 -40 -30 -20 -10 0 10 Wavelength Power 1.53 1.5351.54 1.5451.55 1.5551.56-50 -40 -30 -20 -10 0 10 Wavelength Power
  17. 17. 17/23 Global equalization algorithm Dual-optimization application Tx add ROADM 1 ROADM 3 drop Rx ROADM 4ROADM 2 1.53 1.5351.54 1.5451.55 1.5551.56-50 -40 -30 -20 -10 0 10 Wavelength Power 1.53 1.535 1.54 1.545 1.55 1.555 1.56-60 -50 -40 -30 -20 -10 0 10 Wavelength Power 1.531.5351.541.5451.55 1.5551.56-60 -50 -40 -30 -20 -10 0 10 Wavelength Power 1.53 1.5351.54 1.5451.55 1.5551.56-50 -40 -30 -20 -10 0 10 Wavelength Power     1 2 TOTAL N i i TAA ][minTOTAL wAA TOTAL w  Apply Γ T ≤ allowed tilt? End Yes No Given: N ≥ 2, W, A{1, …, N - 1} , T
  18. 18. 18/23 Dual-optimization application Adaptive EDFA algorithm Global equalization algorithm     1 2 TOTAL N i i TAA ][minTOTAL wAA TOTAL w  Apply Γ T ≤ allowed tilt? End Yes No Given: N ≥ 2, W, A{1, …, N - 1} , T Input power Outputpower Measuredparam. Power mask Pin Measurment Gain Search Given: SDN control Apply Gain Tx add ROADM 1 ROADM 3 drop Rx ROADM 4ROADM 2
  19. 19. 19/23 Test-bed description (SDN controller) • Sub Controler • NETCONF-modeling language YANG models ROADM building blocks and its interconnections (ROADM-plugin) • Application Server • Node abstraction model ApplicationServer SDK-C++ SubController NETCONF / REST REST REST Adaptive EDFA Global WSS Equalization Dual-optimization application SDN controller Node Properties Interfaces Property 1 Property 2 Property N Interface 1 Interface N Property 1 Property 2 Property N ... ... Property 1 Property 2 Property N ... ... Lightpath with: Λ1 = 20 Λ2 = 40 Λ3 = 80
  20. 20. 20/23 1530 1535 1540 1545 1550 1555 1560 10 15 20 25 30 1530 1535 1540 1545 1550 1555 1560 0 10 20 30 40 Local Local + EDFA Global Global + EDFA Dual-optimization application (experimental results) OSNR(dB) Wavelength (nm) Attenuation(dB) 0 20 40 60 80 100 0 5 10 15 20 25 Local Local + EDFA Global Global + EDFA Number of channels Lightpaths (Λ) 20 40 80 Local 13,7 12,9 11,83 Local+EDFA 19,4 16,58 13,86 Global 19,43 21,52 16,43 Global+EDFA 23,3 23,79 20 Mean OSNR (dB) Wavelength (nm) Optical Fiber Communication Conference (OFC) March 2015
  21. 21. 21/23 International Conference on Communications (ICC) June 2015 Collaboration activities with UTD Estimating EDFA Output Power with an Efficient Numerical Modeling Framework Input power Outputpower Measuredparam. Power mask Module 1: Finer Spectrum Granularity Module 2: Continuous Input Power Values
  22. 22. 22/23 One of top three scored papers in Optical Network Design and Modeling (ONDM) May 2015 Collaboration activities with UTD Network-wide signal power control strategies in WDM networks • EDFA gain control • Ideal gain • Fixed gain • Noise Figure (NF)-based gain • WSS power equalization control • Flat output power (FP) • Linear tilted output power (LTP) • Flat OSNR (FOSNR) • Wavelength assignment algorithm • WA: High-to-low frequency First Fit • WA: Low-to-high frequency First Fit Lightpath average OSNR versus offered load WSS: Flat Power equalization, EDFA: Fixed Gain and NF-based gain control. with NF gain control fixed gain
  23. 23. 23/23 Outline / Summary Amplification • Automated amplifier characterizer • Field calibration procedure for distributed Raman amplifiers Reconfigurable Optical Add/Drop Multiplexer (ROADM) • Transient response issues in cascaded WSS-based ROADMs SDN-based dual-optimization application • Adaptive EDFA algorithm • Global WSS equalization algorithm Collaboration activities with UTD • Estimating EDFA Output Power with an Efficient Numerical Modeling Framework • Network-wide signal power control strategies in WDM networks
  24. 24. Thank You! miquel@cpqd.com.br www.cpqd.com.br

×