Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
TALAT Lecture 2301

                        Design of Members

                              Axial Force


   Example 5.2 ...
Example 5.2 Axial force resistance of symmetric hollow extrusion

                    Half width                b         ...
Effective
thickness           t eff         ρ .c
                                     t


                                ...
1
                  0.5 . 1   α . λ
                                                              2
(5.33)        φ       ...
Upcoming SlideShare
Loading in …5
×

TALAT Lecture 2301: Design of Members Example 5.2: Axial force resistance of symmetric hollow extrusion

749 views

Published on

This example provides calculations on axial force of members based on Eurocode 9.

Published in: Education
  • Be the first to comment

  • Be the first to like this

TALAT Lecture 2301: Design of Members Example 5.2: Axial force resistance of symmetric hollow extrusion

  1. 1. TALAT Lecture 2301 Design of Members Axial Force Example 5.2 : Axial force resistance of symmetric hollow extrusion 4 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm Date of Issue: 1999  EAA - European Aluminium Association TALAT 2301 – Example 5.2 1
  2. 2. Example 5.2 Axial force resistance of symmetric hollow extrusion Half width b 50 . mm fo 300 . MPa Indent c 10 . mm E 70000 . MPa Half width of a 18 . mm γ M1 1.0 flat parts Thickness s 1.2 . mm Length L 1200 . mm Nodes no., co-ordinates, 0 b a s thickness 1 b c a s 2 a b c s 3 a b s MPa 10 . Pa 6 4 a b s 5 a b c s kN 1000 . newton 6 b c a s 7 b a s i 8 y b z a t s 9 b c a s 10 a b c s 11 a b s 12 a b s 13 a b c s 50 14 b c a s 0 15 b a s z 0 16 b a s 0 mm 50 50 0 50 Nodes i 1 .. rows ( y ) 1 y mm 5.4.5 Local buckling 250 . MPa ε fo 2 2 yi yi 1 zi zi 1 5.4.3 (1) c) βi if t i > 0 , ,1 ti 5.4.5 (3) c) β ε ε 2 > 22 , 32 . 220 . i heat-treated, ρ c if , 1.0 i ε β i β i unwelded TALAT 2301 – Example 5.2 2
  3. 3. Effective thickness t eff ρ .c t βi t eff i = ρ c= = Effective area i = βi = ε t eff . 2 2 i mm of elements dAi yi yi 1 zi zi 1 i 1 8.333 9.129 1 1.2 rows ( y ) 1 2 25.927 28.402 0.854 1.025 Area of effective 2 3 8.333 9.129 1 1.2 cross section A eff dAi A eff = 356.591 mm 4 30 32.863 0.77 0.924 i =1 5 8.333 9.129 1 1.2 6 25.927 28.402 0.854 1.025 rows ( y ) 1 First dAi Sy 7 8.333 9.129 1 1.2 moment Sy zi zi 1 . z gc 2 A eff 8 30 32.863 0.77 0.924 of area. i =1 9 8.333 9.129 1 1.2 Gravity centre 10 25.927 28.402 0.854 1.025 z gc = 0 m 11 8.333 9.129 1 1.2 12 30 32.863 0.77 0.924 13 8.333 9.129 1 1.2 14 25.927 28.402 0.854 1.025 Axial force resistance, 15 8.333 9.129 1 1.2 no flexural buckling 16 30 32.863 0.77 0.924 fo N Rd A eff . N Rd = 107 kN γ M1 50 0 z mm 0 0 z GC mm 50 50 0 50 y y GC 5.8.4 Flexural buckling , mm mm Second rows ( y ) 1 ti . 2 2 moment of yi yi 1 zi zi 1 zi . zi 1 . 2 2 area of effective I zi zi 1 3 cross section i =1 I = 4.701 . 10 mm 5 4 Radius of I gyration r A eff K .L l = 1.2 . 10 mm 3 Table 5.7 K 1 l Table 5.5 α 0.2 λ o 0.1 k1 1 k2 1 and 5.6 See to the l. 1 . f o right λ λ = 0.689 r π E TALAT 2301 – Example 5.2 3
  4. 4. 1 0.5 . 1 α . λ 2 (5.33) φ λ o λ χ φ = 0.796 χ = 0.837 2 2 φ φ λ fo 5.8.3 (1) N b.Rd χ .k 1 .k 2 . .A eff N b.Rd = 89.5 kN γ M1 TALAT 2301 – Example 5.2 4

×