Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Modelling Water & Life

5,228 views

Published on

My recent 10-minute talk on modelling for environmental decision-making

Published in: Education
  • Be the first to like this

Modelling Water & Life

  1. 1. Modelling Water & Life4 in 40<br />Corey J. A. Bradshaw1,2<br />1THE ENVIRONMENT INSTITUTE, University of Adelaide, Australia<br />2South Australian Research & Development Institute<br />
  2. 2. <ul><li>> 4 million protists
  3. 3. 16600 protozoa
  4. 4. 75000-300000helminth parasites
  5. 5. 1.5million fungi
  6. 6. 320000 plants
  7. 7. 4-6 million arthropods
  8. 8. > 6500 amphibians
  9. 9. > 30000 fishes
  10. 10. 10000 birds
  11. 11. > 5000 mammals</li></li></ul><li>99 % of ALL species that have ever existed...<br />EXTINCT<br />species lifespan = 1-10 M years<br />Ordovician (490-443 MYA)<br />Devonian (417-354 MYA)<br />Permian (299-250 MYA)<br />Triassic (251-200 MYA)<br />Cretaceous (146-64 MYA)<br />Anthropocene<br />extinction rate 100-10000× background<br />© Tiantian Zhang, Good50x70.org<br />Crutzen 2002 Nature 415:23; Bradshaw & Brook 2009 J Cosmol2:221-229<br />
  12. 12.
  13. 13. reduce desertification<br />maintain soils<br />crop pollination<br />seed dispersal<br />food provision<br />water purification<br />fuel provision<br />fibre provision<br />climate regulation<br />flood regulation<br />disease regulation<br />waste decomposition/detoxification<br />nutrient cycling<br />soil formation<br />primary production<br />pharmaceutical sources<br />cultural appreciation (aesthetic, spiritual, educational, recreational…)<br />€153 billion/year<br />fisheries: €50 billion/year<br /><ul><li>€50 billion lost/year
  14. 14. Land-based ecosystem loss €545 billion by 2010
  15. 15. > €14 trillion/year lost by 2050</li></ul>Cost of Policy Inaction (COPI):<br />The case of not meeting the 2010 biodiversity target.<br />European Commission<br />
  16. 16. Bradshaw et al. 2009 Trends Ecol Evol24:541-548<br />Bradshaw et al. 2009 Front Ecol Environ 7:79-87<br /><ul><li>1,011,000 km2 lost 2000-2005 (3.1 %; 0.6 %/year)
  17. 17. highest in boreal biome (60 %)
  18. 18. humid tropics next (Brazil, Indonesia, Malaysia)
  19. 19. dry tropics next highest (Australia, Brazil, Argentina)
  20. 20. N.A. greatest proportional lost by continent
  21. 21. Nationally, Brazil, Canada, Indonesia, DR Congo</li></ul>Hansen et al. 2010 PNAS<br />doi:10.1073/pnas.0912668107<br />Barson et al. 2000 Land Cover<br />Change in Australia, Bur RurSci<br />
  22. 22.
  23. 23. 1990-2000<br /><ul><li>~100,000 people killed
  24. 24. 320 million people displaced
  25. 25. total reported damages > US$1151 billion </li></ul>Bradshaw et al. 2007 Glob Change Biol13:2379-2395<br />
  26. 26. <ul><li>schistosomiasis
  27. 27. malaria
  28. 28. leptospirosis
  29. 29. dysentery
  30. 30. cholera
  31. 31. hepatitis
  32. 32. typhus</li></ul>increased host habitat availability & displacement of humans to areas where inadequate sanitation and temporary high-density living promote disease<br />Ohl & Tapsell 2000 Br Med J 321:1167-1168; Ivers & Ryan 2006 Curr Op Infect Dis19:408-414<br />
  33. 33. Mellin et al. 2010 Glob EcolBiogeog19:212<br />
  34. 34. 6<br />5<br />log variance<br />4<br />3<br />2<br />2.5<br />3<br />3.5<br />4<br />log mean abundance<br />Taylor’s Power Law (TPL)<br />Relationship between log-transformed abundances (N) and temporal variance (s2) = line with a slope of 2<br />deviations from TPL:<br />Kilpatrick & Ives (2003) – Nature<br />TPL slope decreases as the strength of competition between species increases<br />
  35. 35. 3.0 ± 0.4<br />3.1 ± 0.4<br />2.2 ± 0.4<br />2.0 ± 0.3<br />1.7 ± 0.3<br />1.5 ± 0.3<br />Reef isolation<br />Reef area<br />Mellin et al. 2010 Ecology doi:10.1890/10-0267.1<br />
  36. 36. Mellin et al. 2010 Ecology doi:10.1890/10-0267.1<br />
  37. 37. <ul><li>natural forest loss</li></ul>2005-1990 D/ha<br /><ul><li>natural habitat conversion</li></ul>human-modified landcover/total landcover<br /><ul><li>marine captures</li></ul>1990-2005 fish, whales, seals/EEZ km<br /><ul><li>fertiliser use</li></ul>NPK/ha arable land<br /><ul><li>water pollution</li></ul>biochemical oxygen demand/total renewable water resources<br /><ul><li>carbon emissions</li></ul>forestry, land-use change, fossil fuels/km2<br /><ul><li>biodiversity threat</li></ul>Red List threatened birds, mammals, amphibians/listed species<br />Bradshaw et al. 2010 PLoS One 5:e10440<br />
  38. 38. Bradshaw et al. 2010 PLoS One 5:e10440<br />
  39. 39. Bradshaw et al. 2010 PLoS One 5:e10440<br />
  40. 40. ENVIRONMENTAL<br />KUZNETS CURVE<br />environmental damage<br />per capita prosperity<br />Bradshaw et al. 2010 PLoS One 5:e10440<br />
  41. 41. Bradshaw et al. 2010 PLoS One 5:e10440<br />
  42. 42. <ul><li>Barry Brook University of Adelaide
  43. 43. Julian CaleyAIMS
  44. 44. XingliGiamPrinceton University
  45. 45. Mark MeekanAIMS
  46. 46. Camille MellinUniversity of Adelaide/AIMS
  47. 47. Kelvin PehUniversity of Leeds
  48. 48. Navjot S. SodhiNational University of Singapore
  49. 49. Ian WarkentinMemorial University</li></ul>corey.bradshaw@adelaide.edu.au<br />www.adelaide.edu.au/directory/corey.bradshaw<br />ConservationBytes.com<br />© Tiantian Zhang, Good50x70.org<br />

×