Global erosion of ecosystem services

11,578 views

Published on

A lecture to Issues in Sustainable Environments (University of Adelaide) students on the global trends in ecosystem service provisions.

Published in: Education
  • Be the first to like this

Global erosion of ecosystem services

  1. 1. Global Erosion of Ecosystem Services<br />Corey J. A. Bradshaw1,2<br />1THE ENVIRONMENT INSTITUTE, University of Adelaide, Australia<br />2South Australian Research & Development Institute<br />
  2. 2. <ul><li>What is biodiversity?
  3. 3. What are ‘ecosystem services’
  4. 4. Pollination
  5. 5. Mangroves
  6. 6. Fisheries
  7. 7. Carbon sequestration
  8. 8. Fire & insect disturbance
  9. 9. Role of predators
  10. 10. Forests and flooding
  11. 11. Human health
  12. 12. Principal drivers
  13. 13. Economics</li></li></ul><li>
  14. 14. <ul><li>> 4 million protists
  15. 15. 16600 protozoa
  16. 16. 75000-300000helminth parasites
  17. 17. 1.5million fungi
  18. 18. 320000 plants
  19. 19. 4-6 million arthropods
  20. 20. > 6500 amphibians
  21. 21. > 30000 fishes
  22. 22. 10000 birds
  23. 23. > 5000 mammals</li></li></ul><li>Bradshaw et al. 2009 Trends Ecol Evol24:541-548<br />Bradshaw et al. 2009 Front Ecol Environ 7:79-87<br /><ul><li>1,011,000 km2 lost 2000-2005 (3.1 %; 0.6 %/year)
  24. 24. highest in boreal biome (60 %)
  25. 25. humid tropics next (Brazil, Indonesia, Malaysia)
  26. 26. dry tropics next highest (Australia, Brazil, Argentina)
  27. 27. N.A. greatest proportional lost by continent
  28. 28. Nationally, Brazil, Canada, Indonesia, DR Congo</li></ul>Hansen et al. 2010 PNAS<br />doi:10.1073/pnas.0912668107<br />Barson et al. 2000 Land Cover<br />Change in Australia, Bur RurSci<br />
  29. 29. Halpern et al. 2008 Science 319:948-952<br />u<br />
  30. 30.
  31. 31. Connell et al. (2008) Mar Ecol Prog Ser 360:60-72<br />
  32. 32.
  33. 33. Diaz & Rosenberg (2008) Science 321:926-929<br />
  34. 34. corrosive<br />
  35. 35. Brook et al. 2008 Trends Ecol Evol25:453-460<br />
  36. 36. 99 % of ALL species that have ever existed...<br />EXTINCT<br />species lifespan = 1-10 M years<br />Ordovician (490-443 MYA)<br />Devonian (417-354 MYA)<br />Permian (299-250 MYA)<br />Triassic (251-200 MYA)<br />Cretaceous (146-64 MYA)<br />Anthropocene<br />extinction rate 100-10000× background<br />© Tiantian Zhang, Good50x70.org<br />Crutzen 2002 Nature 415:23; Bradshaw & Brook 2009 J Cosmol2:221-229<br />
  37. 37. IUCN RED LIST OF THREATENED SPECIES www.iucnredlist.org<br /><ul><li>21 % of all known mammals
  38. 38. 30 % of all known amphibians
  39. 39. 12 % of all known birds
  40. 40. 35 % of conifers & cycads
  41. 41. 17 % of sharks
  42. 42. 27 % of reef-building corals</li></ul>threatened with extinction<br />
  43. 43. intact biological communities and functioning species interactions provide humanity with a host of ‘services’ that support or improve our quality of life<br />
  44. 44. <ul><li>~ 80 % of all wild plant species require insect pollinators for fruit & seed set
  45. 45. ~ 75 % of all human crops require pollination by insects (mostly bees)
  46. 46. domestic honey bees declined in USA by 59 % since 1947 & in Europe by 25 % since 1985</li></ul>Potts et al. 2010 Trends EcolEvol25:345-353<br />
  47. 47. <ul><li>bees (& other pollinators) require more than just crops to complete life cycle
  48. 48. decline mostly from habitat loss, fragmentation & degradation
  49. 49. other insects, birds, bats also in decline</li></ul>Potts et al. 2010 Trends EcolEvol25:345-353<br />
  50. 50. <ul><li>protect inland human communities from damage caused by coastal erosion and storms
  51. 51. provide critical habitat for variety of terrestrial, estuarine & marine species
  52. 52. ~80 % of fish catches globally depend on mangroves
  53. 53. source & sink for nutrients & sediments for other inshore marine habitats (seagrass beds, coral reefs)</li></ul>Polidoro et al. 2010 PLoS One 5:e10095<br />
  54. 54. <ul><li>protect coasts from floods?
  55. 55. process nutrient & organic matter
  56. 56. control sediment
  57. 57. provide at least US$1.6 B/yrin ecosystem services worldwide
  58. 58. sequester 25.5 M t C/yr
  59. 59. provide > 10% of essential organic carbon to global oceans
  60. 60. occupy only 0.12% of world’s total land area</li></ul>Polidoro et al. 2010 PLoS One 5:e10095<br />
  61. 61. average trophic level has declined by 0.2 units<br />(position in food web relative to autotrophs – primary producers such as phytoplankton)<br />trophic unit varies from 1 (phytoplankton) to 4.6 (e.g., snappers)<br />Paulyet al. 1998 Science 279:860 - 863<br />
  62. 62.
  63. 63. Field et al. 2009 Fish & Fisheries 10:323-328<br />
  64. 64. Marine Parks<br />do they work?<br />Increase fisheries yields?<br /><ul><li>total mass catches, mean fish size, # fish species caught decline with distance away from park edge (Kenyan coral reefs) McClanahan & Mangi2000 EcolAppl10:1792-1805
  65. 65. fish species within park recover after fisher exclusion from park (Kenyan coral reefs) McClanahan & Kaunda-Arara 2002 ConservBiol10:1187–1199
  66. 66. spiny lobster 11 ×more abundant & biomass 25× higher in no-take marine park following establishment; no change in partially protected park (New Zealand) Shears et al. 2006 BiolConserv 132:222-231
  67. 67. total fish, common pandora, red mullet increased close to reserve (Mediterranean) Stelzenmüller et al. 2007 BiolConserv 136:571-583</li></li></ul><li>Spill-over Effect<br /><ul><li>species richness increases linearly with time since reserve establishment, outside of the reserve as well as inside
  68. 68. change is not (primarily) due to habitat change
  69. 69. effect tapers off with distance from reserve
  70. 70. large, predatory fish more common inside and just outside reserves than farther away
  71. 71. community composition outside the reserves becomes more like that inside over time</li></ul>Russ & Alcala 2010 EcolApplic doi:10.1890/09-1197.1<br />
  72. 72. <ul><li>~ 33 % of extant forests on Earth
  73. 73. ~ 50 % remaining large tracts intact forest (31 % world’s primary forest in CAN & RUS
  74. 74. WWF Ecoregion map
  75. 75. 22 % in Russia (78 % in Siberia)</li></ul>Bradshaw, Warkentin & Sodhi 2010 Trends EcolEvol24:541-548<br />
  76. 76. Main threats <br /><ul><li>logging
  77. 77. urban development
  78. 78. deciduous regrowth
  79. 79. dam construction
  80. 80. peat and other mining
  81. 81. increasing fire frequency </li></ul>Bradshaw, Warkentin & Sodhi 2010 Trends EcolEvol24:541-548<br />
  82. 82. Mollicone et al. 2006. Nature 440:436-437<br />Achard et al. 2008 Philos Trans R SocLond B 363:2331-2339<br />Sukhinin et al. 2004. Remote Sens Environ 93:546-564<br /><ul><li>7.5 M ha burnt in 2002; 14.5 M ha in 2003
  83. 83. 87 % 2002-2005 started by humans
  84. 84. annual average burning rate < 4.5 M ha since 1950s
  85. 85. most fires occur near roads and other transportation networks
  86. 86. 8× background rates
  87. 87. humans directly responsible for most ignitions in non-intact Russian forests</li></li></ul><li><ul><li>~ 30 % of the Earth’s stored terrestrial C
  88. 88. 550 Gt C in combined soil and above-ground pools
  89. 89. rate of uptake not be as high as once thought
  90. 90. models predict boreal biome most likely to be altered by climate change
  91. 91. warmer temperatures and longer growing seasons shifting it from net carbon sink to source
  92. 92. fire most important for C flux; changing albedo from  snow
  93. 93. plenty of scope for additional sequestration research</li></li></ul><li>Kurz et al. 2008 Nature 452-987-990<br />
  94. 94. 1990-2000<br /><ul><li>~100,000 people killed
  95. 95. 320 million people displaced
  96. 96. total reported damages > US$1151 billion </li></ul>Bradshaw et al. 2007 Glob Change Biol13:2379-2395<br />
  97. 97. <ul><li>schistosomiasis
  98. 98. malaria
  99. 99. leptospirosis
  100. 100. dysentery
  101. 101. cholera
  102. 102. hepatitis
  103. 103. typhus</li></ul>increased host habitat availability & displacement of humans to areas where inadequate sanitation and temporary high-density living promote disease<br />Ohl & Tapsell 2000 Br Med J 321:1167-1168; Ivers & Ryan 2006 Curr Op Infect Dis19:408-414<br />
  104. 104. Mesopredator Release<br /><ul><li>ecosystems unbalanced by reduction of higher trophic-level predators exerting ‘top-down’ control on abundance of species occupying lower trophic levels
  105. 105. based on earlier theory (in 1980s)</li></ul>Soulé et al. 1988 ConservBiol2:75; Soulé & Crooks 1999 Nature 400:563<br />
  106. 106. <ul><li>dingo-cat-marsupial
  107. 107. lynx-fox-hare
  108. 108. shark-ray-scallop</li></ul>Johnson et al. 2007 Proc R Soc B 274:341; Elmhagen et al. 2010 J Anim Ecol; Myers et al. 2007 Science 315:1846<br />
  109. 109. Does a sick environment make sick people?<br />© http://tropicaltoxic.blogspot.com<br />
  110. 110. <ul><li>physician-assessed morbidity declines with more green spaces near Dutch patients</li></ul>Maas et al. 2009 J EpidemiolComm Health 63:967-973<br /><ul><li>dioxin-poisoning accident in Milan – increased circulatory disease, lymphoma, pulmonary disease & diabetes 25 years later</li></ul>Consonni et al. 2008 Am J Epidemiol167:847-858<br /><ul><li>low water quality, poor sanitation & indoor air pollution from household solid fuels increased child mortality and reduced life expectancy in Mexico</li></ul>Stevens et al. 2009 Proc NatlAcadSci USA 105:16860-16865<br /><ul><li>malaria-vector mosquito bite rates 278× higher in deforested sites in Amazon</li></ul>Vittor et al. 2006 Am J Trop Med Hyg74:3-11<br /><ul><li>Anopheline mosquito density  after deforestation in 60% of 60 studies over past century; 70 % of cases  incidence of malaria</li></ul>Yasuoka & Levins 2007 Am J Trop Med Hyg76:450-460<br />
  111. 111. DATA<br />Human health: World Health Organization Global Burden of Disease database<br />Environment: - Environmental Combination Index (adapted from Yale Env Performance Index)<br />- Proportional Environmental Impact rank (Bradshaw et al. 2010 PLoS One 5:e10440)<br />- natural habitat conversion proportion (Global Land Cover 2000 dataset)<br /> - air/water quality (Yale Environmental Performance Index)<br /> - NPK fertiliser use/area arable land (FAOSTAT database)<br /> - CO2 emissions (Climate Analysis Indicators tool)<br />Control: - human population size (United Nations Common Database)<br /> - purchasing-power parity-adjusted GNI (World Resources Institute)<br /> - health expenditure (WHO Statistical Information System)<br />
  112. 112. DATA<br />Human health: WHO Global Burden of Disease database<br /><ul><li>Disability-Adjusted Life Years (DALY) - years of life lost due to premature mortality and healthy years of life lost due to disability
  113. 113. Infant Mortality (male) – 2004 mortality per 1000 live births
  114. 114. Life Expectancy at birth (male) – 2004
  115. 115. Diarrhoea deaths among children < 5 years (2000)
  116. 116. Malaria deaths among children < 5 years (2000)
  117. 117. Deaths due to Cardiovascular Disease (2002 age-standardised per 10,000)
  118. 118. Deaths due to Cancers (2002 age-standardised per 10,000)</li></li></ul><li>10 %  ECI   mINFM 7.0/1000 live births <br /> mLE 1.9 years<br />http://epi.yale.edu<br />
  119. 119. ALL DISEASE<br />
  120. 120. INFECTIOUS DISEASE<br />
  121. 121. NON-INFECTIOUS DISEASE<br />
  122. 122. 10 %  water quality   infant mortality 3.4/1000 live births<br />  > 946,000 extra infant deaths/year§<br />   1.6 years life expectancy<br />10 %  air quality   2.0 cancer deaths/100,000<br />  > 132,900 extra cancer deaths/year§<br />10 %  pcCO2 emissions  infant mortality 0.4/1000 live births<br /> > 11,700 extra infant deaths/year§<br />§assuming 21.2 births/1000 population & human population 6.5 billion<br />
  123. 123. <ul><li>natural forest loss</li></ul>2005-1990 D/ha<br /><ul><li>natural habitat conversion</li></ul>human-modified landcover/total landcover<br /><ul><li>marine captures</li></ul>1990-2005 fish, whales, seals/EEZ km<br /><ul><li>fertiliser use</li></ul>NPK/ha arable land<br /><ul><li>water pollution</li></ul>biochemical oxygen demand/total renewable water resources<br /><ul><li>carbon emissions</li></ul>forestry, land-use change, fossil fuels/km2<br /><ul><li>biodiversity threat</li></ul>Red List threatened birds, mammals, amphibians/listed species<br />Bradshaw et al. 2010 PLoS One 5:e10440<br />
  124. 124.
  125. 125. Bradshaw et al. 2010 PLoS One 5:e10440<br />
  126. 126. Bradshaw et al. 2010 PLoS One 5:e10440<br />
  127. 127. Bradshaw et al. 2010 PLoS One 5:e10440<br />
  128. 128. ENVIRONMENTAL<br />KUZNETS CURVE<br />environmental damage<br />per capita prosperity<br />Bradshaw et al. 2010 PLoS One 5:e10440<br />
  129. 129. Bradshaw et al. 2010 PLoS One 5:e10440<br />
  130. 130. reduce desertification<br />maintain soils<br />crop pollination<br />seed dispersal<br />food provision<br />water purification<br />fuel provision<br />fibre provision<br />climate regulation<br />flood regulation<br />disease regulation<br />waste decomposition/detoxification<br />nutrient cycling<br />soil formation<br />primary production<br />pharmaceutical sources<br />cultural appreciation (aesthetic, spiritual, educational, recreational…)<br />€153 billion/year<br />fisheries: €50 billion/year<br /><ul><li>€50 billion lost/year
  131. 131. Land-based ecosystem loss €545 billion by 2010
  132. 132. > €14 trillion/year lost by 2050</li></ul>Cost of Policy Inaction (COPI):<br />The case of not meeting the 2010 biodiversity target.<br />European Commission<br />
  133. 133.
  134. 134.
  135. 135. © Moronail.net<br />
  136. 136. © WWF<br />
  137. 137. corey.bradshaw@adelaide.edu.au<br />www.adelaide.edu.au/directory/corey.bradshaw<br />ConservationBytes.com<br />© Tiantian Zhang, Good50x70.org<br />

×