Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

246244973 ejercicios-en-clas1

278 views

Published on

ejercicios

Published in: Education
  • Be the first to comment

  • Be the first to like this

246244973 ejercicios-en-clas1

  1. 1. EJERCICIOS EN CLASE GRÁFICAR LAS DESIGUALDADES EJERCICIO 1 a) Convertir la desigualdad en igualdad 2X1 + 4X2 = 12 b) Graficar una recta  Recta.- representa una ecuación de 1°  Curva.- representa una ecuación de 2° c) Escojo un punto de ensayo: P(0,0) d) Determino si el punto de ensayo satisface la desigualdad 2(0)+4(0) ≤ 12 0 < 12 VERDADERO Si escojo otro punto de ensayo: P (6,4) 2(6)+4(4) ≤ 12 X1 X2 0 3 6 0 2X1 + 4X2 ≤ 12
  2. 2. 28 ≤ 12 FALSO EJERCICIO 2 3X1 + 6X2 = 17 X1 X2 0 2.8 5.7 0 P (0,0) 3(0)+6(0) ≥17 0 ≥ 17 FALSO RESOLUCIÓN POR EL MÉTODO GRÁFICO EJERCICIO 3 Una compañía de auditores se especializa en preparar liquidaciones y auditorías de Empresas. Tienen interés en saber cuántas auditorías y liquidaciones pueden realizar mensualmente para maximizar sus ingresos. Se dispone de 800 horas de trabajo directo y 320 horas para revisión. 3X1 + 6X2 ≥ 17
  3. 3. Una auditoría en promedio requiere de 40 horas de trabajo directo y 10 horas de revisión, además aporta un ingreso de $300. Una liquidación de impuesto requiere de 8 horas de trabajo directo y de 5 horas de revisión, produce un ingreso de $100. El máximo de liquidaciones mensuales disponible es de 60. ESTRUCTURA DEL MODELO DE PROGRAMACIÓN LINEAL F.O S. a 8X1+40X2 ≤ 800 5X1+10X2 ≤ 320 X1 ≤ 60 X1, X2 ≥ 0 8X1+40X2 = 800 X1 X2 0 20 100 0 8(0)+40(0) ≤ 800 0 ≤ 800 VERDADERO LIQUIDACIONES AUDITORÍAS DISPONGO DE : X1 X2 HORAS DE TRABAJO 8 40 800 HORAS DE REVISIÓN 5 10 320 UTILIDAD 100 300 MAXIMIZAR: Z= 100(X1) +300(X2)
  4. 4. 5X1+10X2 = 320 X1 X2 0 32 64 0 5(0)+10(0) ≤ 320 0 ≤ 320 VERDADERO X1 = 60 PUNTO X1 X2 Z A 0 0 0 B 0 20 6000 C 40 12 7600 D 60 2 6600 E 60 0 6000 Para calcular los puntos C y D 8X1+40X2 = 800 5X1+10X2 = 320 (-4) 8X1 +40X2 = 800 -20X1-400X2 = -1280 -12X1 = - 480 X1 = 40
  5. 5. 8(40) + 40X2 = 800 40X2 = 800 -320 X2 = 12 X1 = 60 5(60) + 10X2 = 320 10X2 = 320 – 300 X2 = 2 Solución Óptima (SO): Z =7600 Restricciones Activas (RA): 1,2 Variables Óptimas (VO): X1 = 40 Restricciones Inactivas: (RI): 3 X2 = 12 COMPROBACIÓN 8 X1 + 40 X2 ≤ 800 8(40)+40(12) ≤ 800 320 + 480 ≤ 800 800 ≤ 800 Equilibrio 8 X1 + 40 X2 + h1 = 800 8(40) + 40 (12) + h1 = 800 800 + h1 = 800 h1 = 0 5 X1 + 10 X2 ≤ 320 5(40) + 10(12) ≤ 320 200 + 120 ≤ 320 320 ≤ 320 Equilibrio 5 X1 + 10 X2 + h2 = 320 5(40) + 10(12) + h2 = 320 200 + 120 + h2 = 320 h2 = 0 X1 ≤ 60 40 ≤ 60 Hay Holgura X1 + h3 = 60 40 + h3 = 60 h3 = 20
  6. 6. Entonces, para maximizar los ingresos se debe hacer 40 liquidaciones y 12 auditorías para tener un ingreso de $7600. Además existe una holgura de 20 liquidaciones respecto al límite máximo de liquidaciones posibles en el mes. EJERCICIO 4 Se va a organizar una planta de un taller de automóviles donde van a trabajar electricistas y mecánicos. Por necesidades de mercado, es necesario que haya mayor o igual número de mecánicos que de electricistas y que el número de mecánicos no supere al doble que el de electricistas. En total hay disponibles 30 electricistas y 20 mecánicos. El beneficio de la Empresa por jornada es de 250 euros por electricista y 200 euros por mecánicos. ¿Cuántos trabajadores de cada clase deben elegirse para obtener el máximo beneficio, y cuál es este? F.O. VARIABLES: X1= número de mecánicos X2= número de electricistas S.a X1≥ X2 X1≤ 2X2 X2≤ 30 X1≤ 20 X1, X2 ≥ 0 X1= X2 X1= 2X2 X2= 30 X1=20 0 ≥ 0 0 ≤ 2(0) 0 ≤ 30 0 ≤ 20 V V V V X1 X2 0 0 5 5 10 10 15 15 20 20 X1 X2 0 0 10 5 20 10 30 15 40 20 MAXIMIZAR: Z= 200(X1) +250(X2)
  7. 7. S O. Z= 9000 V.O. RA=1, 4 X1= 20 RI= 2, 3 X2=20 COMPROBACIÓN 1) X1≥ X2 20≥20 Equilibrio 2) X1≤ 2X2 20 ≤ 2(20) 3) 20 ≤ 40 Holgura X1 + H1 = 2X2 20 + H1 = 2(20) 20 + H1 = 40 H1 = 20 4) X2≤ 30 20 ≤ 30 Holgura X2 + H2 = 30 20 + H2 = 30 H2 = 10 5) X1≤20 20 ≤ 20 Equilibrio PUNTOS X1 X2 Z B 20 10 6500 C 20 20 9000
  8. 8. PROFESIONALES DISPONIBLES HOLGURA EXCEDENTE MECÁNICOS 20 ELECTRICISTAS 30 10 EJERCICIO 5 SOLUCIÓN ÚNICA Función objetivo: Minimizar -3x+2y <=6 Sujeto A X +y<=10.5 -x+2y>=4 X,Y >=0 1) -3x+2y =6 2) X +y=10.5 3)-x+2y=4 X Y 0 3 -2 0 0<=6 0<=105 0>=4 V V F X Y 0 2 -4 0 X Y 0 10.5 10.5 0
  9. 9. PUNTO A= (0; 2) COMPROBACIÓN -3x+2y <=6 -3(0)+2(2) <=6 4<=6 HOLGURA -3(0)+2(2)=6 4+H1=6 H1=3 X +y<=10.5 0+2<=10.5 2<=10.5 HOLGURA (0)+2=10.5 2+H2=10.5 H2=8.5 -x+2y>=4 -0+2(2)>=4 4>=4 HOLGURA -0+2(2)+H3=4 H3=0 SO Z=6 V.O X =0 Y= 2 RA=3 RI=1; 2
  10. 10. EJERCICIO No. 6 SOLUCIÓN MÚLTIPLE Función objetivo: Maximizar 3x1+5x2 <=15 Sujeto a 5X1 +2x2<=10 X1;x2>=0 1) 3x1+5x2 <=15 2)5X1 +2x2<=10 0<=15 0<=10 V V X1 X2 0 3 5 0 X1 X2 0 5 2 0 X2
  11. 11. Punto c 3x1+5x2 =15 (-2) 5X1 +2x2=10(5) -6x1-10x2 =-30 25X1 +10x2=50 19x1 0 =20 X1=20/19 3(20/19)+5x2 =15 60/19+5x2 =15 X2 =45/19 PUNTO c= (20/19; 45/19) Comprobación: 3x1+5x2 <=15 3(20/19)+5(45/19) <=15 15<=15 HOLGURA 3(20/19)+2(45/19)=15 15+H1=15 H1=0 5X1 +2x2<=10 5(20/19)+2(45/19) <=10 10<=10 HOLGURA 5(20/19)+2(45/19)=10 10+H2=10 H2=0 SO Z=5 V.O X1 =20/19 X2= 45/19 RA=1;2 Posibles soluciones optimas X1 DESDE 20/19 HASTA 45/19 20/19 <= X1 <=2 X2 0 <= X2 <= 45/19 DONDE Z=5
  12. 12. EJERCICIO No. 7 NO ACOTADO PERO TIENE SOLUCIÓN Un frutero necesita 16 cajas de naranja, 5 de plátanos y 20 de manzanas. Dos mayoristas pueden suministrarle para satisfacer sus necesidades, pero solo venden la fruta en contenedores completos. El mayorista A envía cada contenedor 8 cajas de naranja, 1 de plátanos t 2 de manzana. El mayorista B envía en cada contenedor 2 cajas de naranjas, 1 de plátanos y 7 de manzanas. Sabiendo que el mayorista A se encuentra a 150km de distancia y el mayorista B se encuentra a 300km. Calcular cuántos contenedores habrá de comprar a cada mayorista con objeto de ahorrar tiempo y dinero, reduciendo al mínimo la distancia de lo solicitado. MAYORISTA A X1 MAYORISTA B X2 NECESITA NARANJA 8 2 16 PLÁTANO 1 1 5 MANAZANA 2 7 20 DISTANCIA 150km 300km F.O Minimizar Variables: X1= Mayorista A X2=Mayorista B Z= 150X1+300X2 Sujeto a Condición Técnica X1, X2 ≥ 0 1) 8X1+2X2≥16 2) 1X1+1X2 ≥5 3) 2X1+7X2 ≥20 8X1+2X2=16 1X1+1X2=5 2X1+7X2 =20 X1 X2 8X1+2X2≥16 1X1+1X2 ≥5 2X1+7X2 ≥20
  13. 13. 0≥16 0≥5 0≥20 FALSO FALSO FALSO GRÁFICA NO ACOTADO PERO TIENE SOLUCIÓN La solución óptima es Z = 1050 X1 = 3 X2 = 2 0 3 10 0 X1 X2 0 8 2 0 X1 X2 0 5 5 0
  14. 14. S.O Z= 1050 V.O X1= 3 ; X2= 2 COMPROBACIÓN: HOLGURAS-EXCEDENTES 1) 8X1+2X2≥16 2) 1X1+1X2 ≥5 3) 2X1+7X2 ≥20 8(3)+2( 2) ≥ 16 1(3 )+1( 2) ≥ 5 2( 3)+7(2 ) ≥20 28 ≥ 16 5 ≥ 5 20 ≥20 EXCEDENTE 8X1+2X2=16 8(3)+2(2)-H1 =16 28-H1 =16 H1=12 XI X2 DISPONIBLE HOLGURA EXCEDENTE NARANJA 8 2 16 12 PLÁTANO 1 1 5 MANZANA 2 7 20 EJERCICIO No.8 PROBLEMAS NO FACTIBLES F.O Maximizar Variables: E F Z= 3000X1+4000X2 Condición Técnica E, F≥ 0 E+ F ≤ 5 E-3F ≤0 10E+15F ≤150 20E+10F≤160 30E+10F ≥150
  15. 15. 1) E + F ≤ 5 2) E-3F ≤0 3) 10E+15F ≤150 4) 20E+10F≤160 5) 30E+10F≥150 E + F = 5 E=3F 10E+15F =150 20E+10F=160 30E+10F=150 0≤ 5 0 ≤0 0≤150 0≤160 0≥150 Verdadero Verdadero Verdadero Verdadero Falso NO HAY SOLUCIÓN E F 0 5 5 0 E F 6 2 3 1 E F 0 16 8 0 E F 0 15 5 0 E F 0 10 15 0

×