Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

BloomFilterを直感的に理解する

973 views

Published on

誰でも分かるBloomFilterの基礎

Published in: Engineering
  • Be the first to comment

BloomFilterを直感的に理解する

  1. 1. 1 BloomFilter
  2. 2. 2 BloomFilter BloomFilter BloomFilter BloomFilter
  3. 3. 3 BloomFilter CM
  4. 4. 4 BloomFilter
  5. 5. 5 BloomFilter 1. 2. 3.
  6. 6. 6 . 1 BloomFilter 1. 2.
  7. 7. 6 . 2 BloomFilter 1. 2. 3.
  8. 8. 6 . 3 BloomFilter
  9. 9. 7 BloomFilter CM
  10. 10. 8 BloomFilter ( )
  11. 11. 9 BloomFilter 1. 2. 3.
  12. 12. 10 . 1 BloomFilter
  13. 13. 10 . 2
  14. 14. 10 . 3
  15. 15. 10 . 4 ➞ ➞ or
  16. 16. 11 . 1 (0|1) m [0 <= n < m] k
  17. 17. 11 . 2 m 0 1 1 14 (m = 14)
  18. 18. 11 . 3 k 3 (k = 3) [0 <= n < 14] 14
  19. 19. 12 . 1 A : 185cm -> 185 % 14 = 3 : 77kg -> 77 % 14 = 7 : 32 -> 32 % 14 = 4
  20. 20. 12 . 2 B : 172cm -> 172 % 14 = 4 : 55kg -> 55 % 14 = 13 : 24 -> 24 % 14 = 10 4
  21. 21. 13 . 1
  22. 22. 13 . 2 A : 185cm -> 185 % 14 = 3 : 77kg -> 77 % 14 = 7 : 32 -> 32 % 14 = 4
  23. 23. 13 . 3 C : 174cm -> 174 % 14 = 6 : 63kg -> 63 % 14 = 7 : 28 -> 28 % 14 = 0
  24. 24. 13 . 4 D : 161cm -> 161 % 14 = 7 : 52kg -> 52 % 14 = 10 : 45 -> 45 % 14 = 3 D
  25. 25. 13 . 5 A B A : 32 -> 32 % 14 = 4 B : 172cm -> 172 % 14 = 4 B 3 A 1 A BloomFilter Counting BloomFilter
  26. 26. 13 . 6 k seed hash Cassandra MurMur3 Hash m
  27. 27. 14 m k m k
  28. 28. 15 Have a nice BloomFilter!
  29. 29. 16

×