Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Unidad 4 anualidades y gradientes

351 views

Published on

anualidades y gradientes

Published in: Education
  • Be the first to comment

  • Be the first to like this

Unidad 4 anualidades y gradientes

  1. 1. MATEMATICAS PARA LAS FINANZAS Unidad 3 Anualidades y Gradientes Carlos Mario Morales C
  2. 2. Finanzas del proyecto - Carlos Mario Morales C © 2017  Concepto de anualidad  Tipos de anualidad  Anualidad - valor presente  Anualidad – pagos a partir del valor presente  Anualidad - valor futuro  Anualidad – pagos a partir del valor Futuro  Anualidad - Número de Pagos a partir del Valor Presente  Anualidad - Número de Pagos a partir del Valor futuro  Anualidad - Tasa de interés a partir del VP o VF  Anualidades anticipadas  Anualidades anticipadas – Valor presente  Anualidades anticipadas – Valor futuro
  3. 3. Finanzas del proyecto - Carlos Mario Morales C © 2017  Anualidad diferidas – valor presente  Anualidad diferida – valor futuro  Anualidad perpetua – valor presente  Gradiente: definición  Gradiente aritmético – Valor presente  Gradiente aritmético – valor futuro  Gradiente aritmético infinito  Gradiente geométrico – Valor presente  Gradiente geométrico – Valor futuro  Gradiente geométrico infinito.
  4. 4. Finanzas del proyecto - Carlos Mario Morales C © 2017 Al finalizar la unidad los estudiantes estarán en capacidad de calcular operaciones financieras en las cuales la contraprestación se hace a través de cuotas periódicas iguales, crecientes o decrecientes Para esto deducirá los modelos matemáticos para calcular el valor actual, futuro, interés y número de pagos para diferentes tipos de operaciones y aplicará estos en situaciones de la vida empresarial.
  5. 5. Finanzas del proyecto - Carlos Mario Morales C © 2017 Serie de pagos de una operación financiera que cumple con las siguientes condiciones: 1. Pagos de igual valor 2. Intervalos de pago iguales 3. La misma tasa de Interés para todos los pagos 4. Número de pagos igual número de periodos Anualidades Concepto
  6. 6. Finanzas del proyecto - Carlos Mario Morales C © 2017 1 2 …. n0 VP = ¿? A AnualidadesModelo: Valor presente de una serie de pagos 𝑉𝑃 = 𝐴 1 − (1 + 𝑖 −𝑛 𝑖 ; 𝑝𝑎𝑟𝑎 𝑖 ≠ 0 Para estudiar la deducción de la formula ver el libro: Introducción a las Matemáticas financieras de Carlos Mario Morales C
  7. 7. Finanzas del proyecto - Carlos Mario Morales C © 2017 1 2 …. n0 VP A = ¿? Anualidades Modelo: Pagos a partir del Valor Presente De la formula de VP se puede deducir el valor de 𝐴. 𝐴 = 𝑉𝑃 𝑖 1 − (1 + 𝑖 −𝑛
  8. 8. Finanzas del proyecto - Carlos Mario Morales C © 2017 1 2 …. n0 VF = ¿? A Anualidades Modelo: Valor Futuro a partir de una serie de pagos Para determinar el VF se utiliza el siguiente modelo. 𝑉𝐹 = 𝐴 (1 + 𝑖 𝑛 −1 𝑖 𝑝𝑎𝑟𝑎 𝑖 ≠ 0
  9. 9. Finanzas del proyecto - Carlos Mario Morales C © 2017 1 2 …. n0 VF A = ¿? Anualidades Modelo: Pagos a partir del Valor Futuro 𝐴 = 𝑉𝐹 𝑖 1 + 𝑖 𝑛 − 1 De la formula de VF se puede deducir el valor de 𝐴.
  10. 10. Finanzas del proyecto - Carlos Mario Morales C © 2017 1 2 …. n = ¿?0 VP A Anualidades Modelo: Número de Pagos a partir del Valor Presente 𝑛 = log 𝐴 − 𝐿𝑜𝑔 (𝐴 − 𝑖𝑉𝑃 log 1 + 𝑖
  11. 11. Finanzas del proyecto - Carlos Mario Morales C © 2017 1 2 …. n = ¿?0 VF A Anualidades Modelo: Número de Pagos a partir del Valor Futuro 𝑛 = 𝐿𝑜𝑔(𝑉𝐹𝑖 + 𝐴 − 𝐿𝑜𝑔𝐴 𝐿𝑜𝑔(1 + 𝑖
  12. 12. Finanzas del proyecto - Carlos Mario Morales C © 2017 Anualidades Modelo: Tasa de interés a partir del Valor Presente o Valor Futuro 1 2 …. n0 VP A 𝑖 = ¿? Cuando se tienen los demás elementos de la anualidad, es decir: el valor presente 𝑉𝑃 o valor futuro 𝑉𝐹, el valor y numero de pagos 𝐴 se puede determinar el valor de la tasa de interés 𝑖 a partir de la formulas de VP o VF, no obstante por tratarse de ecuaciones con más de una raíz, no es posible hallar la solución analíticamente; por esta razón se debe utilizar un método de tanteo y error La forma de proceder en estos casos, es la siguiente: 1. Se asigna un valor inicial a la tasa de interés 𝑖 y se calcula la ecuación. 2. Si el valor es menor que la igualdad VP 𝑜 VF entonces se disminuye la tasa y se vuelve a calcular, en caso contrario se aumenta la tasa y se vuelve a calcular 3. Cuando se logre determinar dos valores, uno mayor y otro menor, suficientemente aproximados a los valores de la igualdad, se procede a calcular la tasa de interés por interpolación 𝑉𝑃 = 𝐴 1 − 1 + 𝑖 −𝑛 𝑖 𝑉𝐹 = 𝐴 (1 + 𝑖 𝑛 −1 𝑖
  13. 13. Finanzas del proyecto - Carlos Mario Morales C © 2017 Anualidades Anticipadas En algunas operaciones es frecuente que los pagos se efectúen al comienzo de cada periodo; es el caso de los arrendamientos, ventas a plazos, y contratos de seguros, este tipo de operaciones financieras reciben el nombre de anualidades anticipadas. Una anualidad anticipada es una sucesión de pagos o rentas que se efectúan o vencen al principio del periodo del pago. En la gráfica se comparan las anualidades vencidas y anticipadas 0 1 2 3 n-2 n-1 n Anualidad Vencida 2 31 n-1 n Anualidad Anticipada
  14. 14. Finanzas del proyecto - Carlos Mario Morales C © 2017 Anualidades Anticipadas Modelo: Valor presente a partir de una serie de pagos anticipados 𝑉𝑃 = 𝐴 1 + 1 − (1 + 𝑖 −(𝑛−1 𝑖 0 𝑉𝑃 = ¿? 2 31 n-1 n A
  15. 15. Finanzas del proyecto - Carlos Mario Morales C © 2017 Anualidades Anticipadas Modelo: Valor futuro de una serie de pagos anticipados 𝑉𝐹 = 𝐴 1 + 𝑖 𝑛 − 1 𝑖 1 + 𝑖 0 𝑉𝐹 = ¿? 2 31 n-1 n A
  16. 16. Finanzas del proyecto - Carlos Mario Morales C © 2017 Anualidades Diferidas 1 2 3 n-3 n-2 n-1 n A 𝑽𝑷 𝒊 0 Hasta el momento se ha considerado que el pago de las rentas se inicia inmediatamente después de que se plantea la operación; no obstante, existen transacciones donde los pagos o rentas se realizan después de haber pasado cierta cantidad de periodos, en estos casos la operación se denomina anualidad diferida. En la gráfica se ilustran este tipo de actividades.
  17. 17. Finanzas del proyecto - Carlos Mario Morales C © 2017 Anualidades Diferidas Para hallar el valor presente de este tipo anualidades, se determina el valor presente de la anualidad un periodo antes de iniciarse los pagos (para el ejemplo n-4); utilizando para ello la formula de anualidad vencida, para el valor hallado se halla el valor presente en el periodo 0. Modelo: Valor Presente de una serie de pagos diferidos 1 2 3 n-3 n-2 n-1 n A 𝑽𝑷 𝒊 0
  18. 18. Finanzas del proyecto - Carlos Mario Morales C © 2017 Anualidades Diferidas Para hallar el valor futuro de este tipo anualidades, se determina el valor presente de la anualidad un periodo antes de iniciarse los pagos (para el ejemplo n-4); utilizando para ello la formula de anualidad vencida, para el valor hallado se halla el valor futuro en el periodo n. Modelo: Valor Futuro de una serie de pagos diferidos 1 2 3 n-3 n-2 n-1 n A 𝑽𝑭 = ? 𝒊 0
  19. 19. Finanzas del proyecto - Carlos Mario Morales C © 2017 Anualidades Perpetuas Modelo: Valor Presente de una serie de pagos perpetuo 1 2 3 n-3 n-2 n-1 ∞ A 𝑽𝑷 i 0 Cuando el número de pagos de una anualidad es muy grande, o cuando no se conoce con exactitud la cantidad de pagos se dice que la anualidad es perpetua. Al deducirse los modelos matemáticos se debe tener en cuenta que solo existe el valor presente ya que por tratarse de una anualidad perpetua el valor futuro de este tipo de anualidades sería infinito 𝑉𝑃 = 𝐴 𝑖 ; 𝑝𝑎𝑟𝑎 𝑖 ≠ 0
  20. 20. Finanzas del proyecto - Carlos Mario Morales C © 2017 Gradientes Definición Serie de pagos que cumplen con las siguientes condiciones:  Los pagos cumplen con una ley de formación  Los pagos se efectúan a iguales intervalos de tiempo  Todos los pagos se calculan a la misma tasa de interés  El número de pagos es igual al número de periodos 0 1 2 3 n… A 𝑉𝑃 𝑖
  21. 21. Finanzas del proyecto - Carlos Mario Morales C © 2017 Gradientes Ley de formación La ley de formación, la cual determina la serie de pagos, puede tener un sinnúmero de variantes; no obstante, en la vida cotidiana las más utilizadas son el gradiente aritmético y el geométrico; las cuales a su vez pueden generar cuotas crecientes o decrecientes Creciente Decreciente Aritmético Creciente Decreciente Geométrico Creciente Decreciente Otros
  22. 22. Finanzas del proyecto - Carlos Mario Morales C © 2017 Gradiente Aritmético 0 1 2 3 n-2 n-1 n 𝑨 𝑽𝑷 𝒊 𝑨 + 𝒌 𝑨 + 𝟐𝒌 𝑨 + (𝒏 − 𝟑 𝒌 𝑨 + (𝒏 − 𝟐 𝒌 𝑨 + (𝒏 − 𝟏 𝒌 Para el gradiente aritmético, la ley de formación indica que cada pago es igual al anterior, más una constante k; la cual puede ser positiva en cuyo caso las cuotas son crecientes, negativa lo cual genera cuotas decrecientes Ley de formación 𝑨 𝑃𝑟𝑖𝑚𝑒𝑟 𝑝𝑎𝑔𝑜 𝐴2 = 𝑨 + 𝒌 𝑆𝑒𝑔𝑢𝑛𝑑𝑜 𝑝𝑎𝑔𝑜 𝐴3 = 𝐴2 + 𝑘 = 𝑨 + 𝟐𝒌 𝑇𝑒𝑟𝑐𝑒𝑟 𝑝𝑎𝑔𝑜 𝐴4 = 𝐴3 + 𝑘 = 𝑨 + 𝟑𝒌 𝐶𝑢𝑎𝑟𝑡𝑜 𝑝𝑎𝑔𝑜 … … … … … … … … … 𝐴 𝑛 = 𝑨 + 𝒏 − 𝟏 𝒌 𝑁𝑒𝑎𝑣𝑜 𝑝𝑎𝑔𝑜
  23. 23. Finanzas del proyecto - Carlos Mario Morales C © 2017 Gradiente aritmético Modelo: Valor Presente de una serie de pagos crecientes aritméticamente 𝑉𝑃 = 𝐴 1 − 1 + 𝑖 −𝑛 𝑖 + 𝐾 𝑖 1 − (1 + 𝑖 −𝑛 𝑖 − 𝑛 1 + 𝑖 𝑛 0 1 2 3 n-2 n-1 n 𝑨 𝑽𝑷 𝒊 𝑨 + 𝒌 𝑨 + 𝟐𝒌 𝑨 + (𝒏 − 𝟑 𝒌 𝑨 + (𝒏 − 𝟐 𝒌 𝑨 + (𝒏 − 𝟏 𝒌
  24. 24. Finanzas del proyecto - Carlos Mario Morales C © 2017 Gradiente aritmético Modelo: Valor Futuro de una serie de pagos crecientes aritméticamente 𝑉𝐹 = 𝐴 1 + 𝑖 𝑛 − 1 𝑖 + 𝐾 𝑖 1 + 𝑖 𝑛 − 1 𝑖 − 𝑛 0 1 2 3 n-2 n-1 n 𝑨 𝑽𝑭 𝒊 𝑨 + 𝒌 𝑨 + 𝟐𝒌 𝑨 + (𝒏 − 𝟑 𝒌 𝑨 + (𝒏 − 𝟐 𝒌 𝑨 + (𝒏 − 𝟏 𝒌
  25. 25. Finanzas del proyecto - Carlos Mario Morales C © 2017 Gradiente aritmético Modelo: Valor presente de una serie de pagos infinitos crecientes aritméticamente 𝑉𝑃 = 𝐴 𝑖 + 𝐾 𝑖2 Cuando se habla de pagos de gradientes matemáticos infinitos, solo tiene sentido hablar del valor presente, como equivalente de dichos pagos. ∞0 1 2 3 n-2 n-1 … 𝑨 𝑽𝑷 𝒊 𝑨 + 𝒌 𝑨 + 𝟐𝒌 𝑨 + (𝒏 − 𝟑 𝒌 𝑨 + (𝒏 − 𝟐 𝒌 𝑨 + (𝒏 − 𝟏 𝒌
  26. 26. Finanzas del proyecto - Carlos Mario Morales C © 2017 Gradiente Geométrico Ley de formación 𝑨 𝑃𝑟𝑖𝑚𝑒𝑟 𝑝𝑎𝑔𝑜 𝐴2 = 𝑨(𝟏 + 𝑮 𝑆𝑒𝑔𝑢𝑛𝑑𝑜 𝑝𝑎𝑔𝑜 𝐴3 = 𝐴2(1 + 𝐺 = 𝑨(𝟏 + 𝑮 𝟐 𝑇𝑒𝑟𝑐𝑒𝑟 𝑝𝑎𝑔𝑜 𝐴4 = 𝐴3(1 + 𝐺 = 𝑨(𝟏 + 𝑮 𝟑 𝐶𝑢𝑎𝑟𝑡𝑜 𝑝𝑎𝑔𝑜 … … … … … … … … … 𝐴 𝑛 = 𝑨(𝟏 + 𝑮 𝒏−𝟏 𝑁𝑒𝑎𝑣𝑜 𝑝𝑎𝑔𝑜 0 1 2 3 n-2 n-1 n 𝑨 𝑽𝑷 𝒊 𝑨(𝟏 + 𝑮 𝑨(𝟏 + 𝑮 𝟐 𝑨(𝟏 + 𝑮 𝒏−𝟑 𝑨(𝟏 + 𝑮 𝒏−𝟐 𝑨(𝟏 + 𝑮 𝒏−𝟏 De acuerdo a la ley de formación, en este caso, cada pago será igual al anterior multiplicado por una constante, así como se indica
  27. 27. Finanzas del proyecto - Carlos Mario Morales C © 2017 Gradiente Geométrico Modelo: Valor Presente de una serie de pagos crecientes geométricamente 𝐕𝐏 = 𝑨 𝐺 − 𝑖 1 + 𝐺 𝑛 1 + 𝑖 𝑛 − 1 𝑠𝑖 𝐺 ≠ 𝑖 = 𝑛𝐴 1 + 𝑖 𝑠𝑖 𝐺 = 𝑖0 1 2 3 n-2 n-1 n 𝑨 𝑽𝑷 𝒊 𝑨(𝟏 + 𝑮 𝑨(𝟏 + 𝑮 𝟐 𝑨(𝟏 + 𝑮 𝒏−𝟑 𝑨(𝟏 + 𝑮 𝒏−𝟐 𝑨(𝟏 + 𝑮 𝒏−𝟏
  28. 28. Finanzas del proyecto - Carlos Mario Morales C © 2017 Gradiente Geométrico Modelo: Valor Futuro de una serie de pagos crecientes geométricamente 𝑽𝑭 = 𝐀 𝐺 − 𝑖 1 + 𝐺 𝑛 − 1 + 𝑖 𝑛 ; 𝑠𝑖 𝐺 ≠ 𝑖 = 𝑛A 1 + 𝑖 −𝑛+1 ; 𝑠𝑖 𝐺 = 𝑖0 1 2 3 n-2 n-1 n 𝑨 𝑽𝑭 𝒊 𝑨(𝟏 + 𝑮 𝑨(𝟏 + 𝑮 𝟐 𝑨(𝟏 + 𝑮 𝒏−𝟑 𝑨(𝟏 + 𝑮 𝒏−𝟐 𝑨(𝟏 + 𝑮 𝒏−𝟏
  29. 29. Finanzas del proyecto - Carlos Mario Morales C © 2017 Gradiente Geométrico Modelo: Valor Presente de una serie de pagos infinito crecientes geométricamente 𝐕𝐏 = 𝐴1 𝑖 − 𝐺 ; 𝑠𝑖 𝐺 < 𝑖 = ∞; 𝑠𝑖 𝐺 ≥ 𝑖 ∞0 1 2 3 n-1 n …. 𝑨 𝑽𝑷 𝒊 𝑨(𝟏 + 𝑮 𝑨(𝟏 + 𝑮 𝟐 𝑨(𝟏 + 𝑮 𝒏−𝟑 𝑨(𝟏 + 𝑮 𝒏−𝟐 𝑨(𝟏 + 𝑮 𝒏−𝟏

×