Application Architectures with Hadoop | Data Day Texas 2015

2,795 views

Published on

Cloudera's Mark Grover presents Application Architectures with Hadoop at Data Day Texas 2015.

Published in: Technology

Application Architectures with Hadoop | Data Day Texas 2015

  1. 1. Application Architectures with Hadoop Data Day Texas January 10, 2015 tiny.cloudera.com/app-arch-austin Mark Grover | @mark_grover
  2. 2. 2 About the book •  @hadooparchbook •  hadooparchitecturebook.com •  github.com/hadooparchitecturebook •  slideshare.com/hadooparchbook ©2014 Cloudera, Inc. All Rights Reserved.
  3. 3. 3 About Me •  Mark –  Software Engineer –  Committer on Apache Bigtop, committer and PPMC member on Apache Sentry (incubating). –  Contributor to Hadoop, Hive, Spark, Sqoop, Flume ©2014 Cloudera, Inc. All Rights Reserved.
  4. 4. 4 Case Study Clickstream Analysis
  5. 5. 5 Analytics ©2014 Cloudera, Inc. All Rights Reserved.
  6. 6. 6 Analytics ©2014 Cloudera, Inc. All Rights Reserved.
  7. 7. 7 Web Logs – Combined Log Format ©2014 Cloudera, Inc. All Rights Reserved. 244.157.45.12 - - [17/Oct/2014:21:08:30 ] "GET /seatposts HTTP/1.0" 200 4463 "http://bestcyclingreviews.com/top_online_shops" "Mozilla/ 5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1944.0 Safari/537.36” 244.157.45.12 - - [17/Oct/2014:21:59:59 ] "GET /Store/cart.jsp? productID=1023 HTTP/1.0" 200 3757 "http://www.casualcyclist.com" "Mozilla/5.0 (Linux; U; Android 2.3.5; en-us; HTC Vision Build/ GRI40) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1”
  8. 8. 8 Clickstream Analytics ©2014 Cloudera, Inc. All Rights Reserved. 244.157.45.12 - - [17/Oct/ 2014:21:08:30 ] "GET /seatposts HTTP/1.0" 200 4463 "http:// bestcyclingreviews.com/ top_online_shops" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1944.0 Safari/ 537.36”
  9. 9. 9 Challenges of Hadoop Implementation ©2014 Cloudera, Inc. All Rights Reserved.
  10. 10. 10 Challenges of Hadoop Implementation ©2014 Cloudera, Inc. All Rights Reserved.
  11. 11. 11 Hadoop Architectural Considerations •  Storage managers? –  HDFS? HBase? •  Data storage and modeling: –  File formats? Compression? Schema design? •  Data movement –  How do we actually get the data into Hadoop? How do we get it out? •  Metadata –  How do we manage data about the data? •  Data access and processing –  How will the data be accessed once in Hadoop? How can we transform it? How do we query it? •  Orchestration –  How do we manage the workflow for all of this? ©2014 Cloudera, Inc. All Rights Reserved.
  12. 12. 12 Architectural Considerations Data Storage and Modeling
  13. 13. 13 Data Modeling Considerations •  We need to consider the following in our architecture: –  Storage layer – HDFS? HBase? Etc. –  File system schemas – how will we lay out the data? –  File formats – what storage formats to use for our data, both raw and processed data? –  Data compression formats? ©2014 Cloudera, Inc. All Rights Reserved.
  14. 14. 14 Architectural Considerations Data Modeling – Storage Layer
  15. 15. 15 Data Storage Layer Choices •  Two likely choices for raw data: ©2014 Cloudera, Inc. All Rights Reserved.
  16. 16. 16 Data Storage Layer Choices •  Stores data directly as files •  Fast scans •  Poor random reads/writes •  Stores data as Hfiles on HDFS •  Slow scans •  Fast random reads/writes ©2014 Cloudera, Inc. All Rights Reserved.
  17. 17. 17 Data Storage – Storage Manager Considerations •  Incoming raw data: –  Processing requirements call for batch transformations across multiple records – for example sessionization. •  Processed data: –  Access to processed data will be via things like analytical queries – again requiring access to multiple records. •  We choose HDFS –  Processing needs in this case served better by fast scans. ©2014 Cloudera, Inc. All Rights Reserved.
  18. 18. 18 Architectural Considerations Data Modeling – Data Storage Format
  19. 19. 19 Our Format Choices… •  Raw data –  Avro with Snappy •  Processed data –  Parquet ©2014 Cloudera, Inc. All Rights Reserved.
  20. 20. 20 Architectural Considerations Data Modeling – HDFS Schema Design
  21. 21. 21 Recommended HDFS Schema Design •  How to lay out data on HDFS? ©2014 Cloudera, Inc. All Rights Reserved.
  22. 22. 22 Recommended HDFS Schema Design /user/<username> - User specific data, jars, conf files /etl – Data in various stages of ETL workflow /tmp – temp data from tools or shared between users /data – shared data for the entire organization /app – Everything but data: UDF jars, HQL files, Oozie workflows ©2014 Cloudera, Inc. All Rights Reserved.
  23. 23. 23 Architectural Considerations Data Modeling – Advanced HDFS Schema Design
  24. 24. 24 Partitioning ©2014 Cloudera, Inc. All Rights Reserved. dataset col=val1/file.txt col=val2/file.txt … col=valn/file.txt dataset file1.txt file2.txt … filen.txt Un-partitioned HDFS directory structure Partitioned HDFS directory structure
  25. 25. 25 Partitioning considerations •  What column to partition by? –  Don’t have too many partitions (<10,000) –  Don’t have too many small files in the partitions –  Good to have partition sizes at least ~1 GB •  We’ll partition by timestamp. This applies to both our raw and processed data. ©2014 Cloudera, Inc. All Rights Reserved.
  26. 26. 26 Architectural Considerations Data Ingestion
  27. 27. 27 File Transfers •  “hadoop fs –put <file>” •  Reliable, but not resilient to failure. •  Other options are mountable HDFS, for example NFSv3. ©2014 Cloudera, Inc. All Rights Reserved.
  28. 28. 28 Streaming Ingestion •  Flume –  Reliable, distributed, and available system for efficient collection, aggregation and movement of streaming data, e.g. logs. •  Kafka –  Reliable and distributed publish-subscribe messaging system. ©2014 Cloudera, Inc. All Rights Reserved.
  29. 29. 29 Flume vs. Kafka •  Purpose built for Hadoop data ingest. •  Pre-built sinks for HDFS, HBase, etc. •  Supports transformation of data in-flight. •  General pub-sub messaging framework. •  Just a message transport. •  Have to use third party tool to ingest. ©2014 Cloudera, Inc. All Rights Reserved.
  30. 30. 30 Flume and Kafka •  Kafka Source •  Kafka Channel ©2014 Cloudera, Inc. All Rights Reserved.
  31. 31. 31 Sources Interceptors Selectors Channels Sinks Flume Agent Short Intro to Flume Twitter, logs, JMS, webserver Mask, re-format, validate… DR, critical Memory, file, Kafka HDFS, HBase, Solr
  32. 32. 32 A Brief Discussion of Flume Patterns – Fan-in •  Flume agent runs on each of our servers. •  These agents send data to multiple agents to provide reliability. •  Flume provides support for load balancing. ©2014 Cloudera, Inc. All Rights Reserved.
  33. 33. 33 Ingestion Decisions •  Historical Data –  File transfer •  Incoming Data –  Flume with the spooling directory source. •  Relational Data Sources – ODS, CRM, etc. –  Sqoop ©2014 Cloudera, Inc. All Rights Reserved.
  34. 34. 34 Architectural Considerations Data Processing – Engines
  35. 35. 35 Processing Engines •  MapReduce •  Abstractions – Pig, Hive, Cascading, Crunch •  Spark •  Impala Confidentiality Information Goes Here
  36. 36. 36 MapReduce •  Oldie but goody •  Restrictive Framework / Innovated Work Around •  Extreme Batch Confidentiality Information Goes Here
  37. 37. 37 MapReduce Basic High Level Confidentiality Information Goes Here Mapper HDFS (Replicated) Native File System Block of Data Temp Spill Data Partitioned Sorted Data Reducer Reducer Local Copy Output File
  38. 38. 38 Abstractions •  SQL –  Hive •  Script/Code –  Pig: Pig Latin –  Crunch: Java/Scala –  Cascading: Java/Scala Confidentiality Information Goes Here
  39. 39. 39 Spark •  The New Kid that isn’t that New Anymore •  Easily 10x less code •  Extremely Easy and Powerful API •  Very good for machine learning •  Scala, Java, and Python •  RDDs •  DAG Engine Confidentiality Information Goes Here
  40. 40. 40 Impala • Real-time open source MPP style engine for Hadoop • Doesn’t build on MapReduce • Written in C++, uses LLVM for run-time code generation • Can create tables over HDFS or HBase data • Accesses Hive metastore for metadata • Access available via JDBC/ODBC ©2014 Cloudera, Inc. All Rights Reserved.
  41. 41. 41 Architectural Considerations Data Processing – What processing needs to happen?
  42. 42. 42 What processing needs to happen? Confidentiality Information Goes Here •  Sessionization •  Filtering •  Deduplication •  BI / Discovery
  43. 43. 43 Sessionization Confidentiality Information Goes Here Website visit Visitor 1 Session 1 Visitor 1 Session 2 Visitor 2 Session 1 > 30 minutes
  44. 44. 44 Why sessionize? Confidentiality Information Goes Here Helps answers questions like: •  What is my website’s bounce rate? –  i.e. how many % of visitors don’t go past the landing page? •  Which marketing channels (e.g. organic search, display ad, etc.) are leading to most sessions? –  Which ones of those lead to most conversions (e.g. people buying things, signing up, etc.) •  Do attribution analysis – which channels are responsible for most conversions?
  45. 45. 45 How to Sessionize? Confidentiality Information Goes Here 1.  Given a list of clicks, determine which clicks came from the same user 2.  Given a particular user's clicks, determine if a given click is a part of a new session or a continuation of the previous session
  46. 46. 46 #1 – Which clicks are from same user? •  We can use: –  IP address (244.157.45.12) –  Cookies (A9A3BECE0563982D) –  IP address (244.157.45.12)and user agent string ((KHTML, like Gecko) Chrome/36.0.1944.0 Safari/537.36") ©2014 Cloudera, Inc. All Rights Reserved.
  47. 47. 47 #1 – Which clicks are from same user? •  We can use: –  IP address (244.157.45.12) –  Cookies (A9A3BECE0563982D) –  IP address (244.157.45.12)and user agent string ((KHTML, like Gecko) Chrome/36.0.1944.0 Safari/537.36") ©2014 Cloudera, Inc. All Rights Reserved.
  48. 48. 48 #1 – Which clicks are from same user? ©2014 Cloudera, Inc. All Rights Reserved. 244.157.45.12 - - [17/Oct/2014:21:08:30 ] "GET /seatposts HTTP/1.0" 200 4463 "http:// bestcyclingreviews.com/top_online_shops" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1944.0 Safari/537.36” 244.157.45.12 - - [17/Oct/2014:21:59:59 ] "GET /Store/cart.jsp?productID=1023 HTTP/1.0" 200 3757 "http://www.casualcyclist.com" "Mozilla/5.0 (Linux; U; Android 2.3.5; en-us; HTC Vision Build/GRI40) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1”
  49. 49. 49 #2 – Which clicks part of the same session? ©2014 Cloudera, Inc. All Rights Reserved. 244.157.45.12 - - [17/Oct/2014:21:08:30 ] "GET /seatposts HTTP/1.0" 200 4463 "http:// bestcyclingreviews.com/top_online_shops" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1944.0 Safari/537.36” 244.157.45.12 - - [17/Oct/2014:21:59:59 ] "GET /Store/cart.jsp?productID=1023 HTTP/1.0" 200 3757 "http://www.casualcyclist.com" "Mozilla/5.0 (Linux; U; Android 2.3.5; en-us; HTC Vision Build/GRI40) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1” > 30 mins apart = different sessions
  50. 50. 50©2014 Cloudera, Inc. All rights reserved. Sessionization engine recommendation •  We have sessionization code in MR, Spark on github. The complexity of the code varies, depends on the expertise in the organization. •  We choose MR, since it’s fairly simple and maintainable code.
  51. 51. 51 Filtering – filter out incomplete records ©2014 Cloudera, Inc. All Rights Reserved. 244.157.45.12 - - [17/Oct/2014:21:08:30 ] "GET /seatposts HTTP/1.0" 200 4463 "http:// bestcyclingreviews.com/top_online_shops" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1944.0 Safari/537.36” 244.157.45.12 - - [17/Oct/2014:21:59:59 ] "GET /Store/cart.jsp?productID=1023 HTTP/1.0" 200 3757 "http://www.casualcyclist.com" "Mozilla/5.0 (Linux; U…
  52. 52. 52 Filtering – filter out records from bots/spiders ©2014 Cloudera, Inc. All Rights Reserved. 244.157.45.12 - - [17/Oct/2014:21:08:30 ] "GET /seatposts HTTP/1.0" 200 4463 "http:// bestcyclingreviews.com/top_online_shops" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1944.0 Safari/537.36” 209.85.238.11 - - [17/Oct/2014:21:59:59 ] "GET /Store/cart.jsp?productID=1023 HTTP/1.0" 200 3757 "http://www.casualcyclist.com" "Mozilla/5.0 (Linux; U; Android 2.3.5; en-us; HTC Vision Build/GRI40) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1” Google spider IP address
  53. 53. 53©2014 Cloudera, Inc. All rights reserved. Filtering recommendation •  Bot/Spider filtering can be done easily in any of the engines •  Incomplete records are harder to filter in schema systems like Hive, Impala, Pig, etc. •  Pretty close choice between MR, Hive and Spark •  Can be done in Flume interceptors as well •  We can simply embed this in our sessionization job
  54. 54. 54 Deduplication – remove duplicate records ©2014 Cloudera, Inc. All Rights Reserved. 244.157.45.12 - - [17/Oct/2014:21:08:30 ] "GET /seatposts HTTP/1.0" 200 4463 "http:// bestcyclingreviews.com/top_online_shops" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1944.0 Safari/537.36” 244.157.45.12 - - [17/Oct/2014:21:08:30 ] "GET /seatposts HTTP/1.0" 200 4463 "http:// bestcyclingreviews.com/top_online_shops" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1944.0 Safari/537.36”
  55. 55. 55©2014 Cloudera, Inc. All rights reserved. Deduplication recommendation •  Can be done in all engines. •  We already have a Hive table with all the columns, a simple DISTINCT query will perform deduplication •  We use Pig
  56. 56. 56©2014 Cloudera, Inc. All rights reserved. BI/Discovery engine recommendation •  Main requirements for this are: –  Low latency –  SQL interface (e.g. JDBC/ODBC) –  Users don’t know how to code •  We chose Impala –  It’s a SQL engine –  Much faster than other engines –  Provides standard JDBC/ODBC interfaces
  57. 57. 57 Architectural Considerations Orchestration
  58. 58. 58©2014 Cloudera, Inc. All rights reserved. •  Workflow is fairly simple •  Need to trigger workflow based on data •  Be able to recover from errors •  Perhaps notify on the status •  And collect metrics for reporting Choosing… Easier in Oozie
  59. 59. 59©2014 Cloudera, Inc. All rights reserved. •  Workflow is fairly simple •  Need to trigger workflow based on data •  Be able to recover from errors •  Perhaps notify on the status •  And collect metrics for reporting Choosing the right Orchestration Tool Better in Azkaban
  60. 60. 60©2014 Cloudera, Inc. All rights reserved. •  The best orchestration tool is the one you are an expert on – Oozie – Spark Streaming, etc. don’t require orchestration tool Important Decision Consideration!
  61. 61. 61 Putting It All Together Final Architecture
  62. 62. 62©2014 Cloudera, Inc. All rights reserved. Final architecture Hadoop Cluster BI/Visualization tool (e.g. microstrategy) BI Analysts Spark For machine learning and graph processing R/Python Statistical Analysis Custom Apps 3. Accessing 2. Processing 4. Orchestration 1. Ingestion Operational Data Store CRM System Via Sqoop Web servers Website users Web logsVia Flume
  63. 63. 63 Free books!! •  Now (at 11:00 AM) •  @hadooparchbook •  hadooparchitecturebook.com •  github.com/hadooparchitecturebook •  slideshare.com/hadooparchbook ©2014 Cloudera, Inc. All Rights Reserved.
  64. 64. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. Thank you

×