SlideShare a Scribd company logo
1 of 17
HBase @ Groupon
Deal Personalization Systems with
HBase
Ameya Kanitkar
ameya@groupon.com
Relevance & Personalization
Systems @ Groupon
Relevance & Personalization
Scaling: Keeping Up With a Changing Business
ChicagoPittsburgh San Francisco
200+
400+
2000+
Growing Deals Growing Users
• 200 Million+ subscribers
• We need to store data
like, user click
history, email
records, service logs etc.
This tunes to billions of
data points and TB’s of
data
Deal Personalization Infrastructure Use Cases
Deliver Personalized
Emails
Deliver Personalized
Website & Mobile
Experience
Offline System Online System
Email
Personalize billions of emails for hundreds
of millions of users
Personalize one of the most popular
e-commerce mobile & web app
for hundreds of millions of users & page views
Earlier System
Offline
Personalization
Map/Reduce
Data Pipeline (User Logs, Email Records, User History etc)
Online Deal
Personalization
API
MySQL Store
Email
Earlier System
Email
Offline
Personalization
Map/Reduce
Data Pipeline
Online Deal
Personalization
API
MySQL Store
• Scaling MySQL for data
such as user click
history, email records
was painful (to say the
least)
• Need to maintain two
separate data pipelines
for essentially the same
data.
Email
Offline
Personalization
Map/Reduce
Data Pipeline
Online Deal
Personalization
API
Ideal Data Store
• Common data store that
serves data to both online and
offline systems
• Data store that scales to
hundreds of millions of
records
• Data store that plays well with
our existing hadoop based
systems
• Data store that supports get()
put() access patterns based
on a key (User ID).
Ideal System
Architecture Options
HBase System
Online
Personalization
Email
Offline
Personalization
Map/Reduce
Data Pipeline
Architecture Options
HBase System
Online
Personalization
Email
Offline
Personalization
Map/Reduce
Data Pipeline
• Simple design
• Consolidated system that
serves both online and offline
personalization
Pros
Architecture Options
HBase System
Online
Personalization
Email
Offline
Personalization
Map/Reduce
Data Pipeline
• We now have same uptime
SLA on both offline and online
system
• Maintaining online latency SLA
for bulk writes and bulk reads
is hard.
Cons
And here is why…
Architecture
HBase Offline
System
HBase for Online
System
Real Time
Relevance
Email
Relevance
Map/Reduce
Replication
Data Pipeline
• We can now
maintain different
SLA on online and
offline systems
• We can tune HBase
cluster differently
for online and
offline systems
HBase Schema Design
User ID Column Family 1 Column Family 2
Unique Identifier for
Users
User History and
Profile Information
Email History For Users
• Most of our data access patterns are via “User Key”
• This makes it easy to design HBase schema
• The actual data is kept in JSON
Overwrite user history
and profile info
Append email history for
each day as a separate
columns. (On avg each row
has over 200 columns)
Cluster Sizing
Hadoop +
HBase
Cluster
100+ machine Hadoop
cluster, this runs heavy map
reduce jobs
The same cluster also hosts
15 node HBase cluster
Online HBase
Cluster
HBase
Replication
10 Machine
dedicated HBase
cluster to serve real
time SLA
• Machine Profile
• 96 GB RAM (HBase 25
GB)
• 24 Virtual Cores CPU
• 8 2TB Disks
• Data Profile
• 100 Million+ Records
• 2TB+ Data
• Over 4.2 Billion Data
Points
Summary
SOLVED
Data store that
works for online
and offline use
cases
ameya@groupon.com
www.groupon.com/techjobs
Questions?
Thanks!
HBase Performance Tuning
• Pre Split Tables
• Increase Lease Timeouts
• Increase Scanner Timeouts
• Increase region sizes (Ours is 10 GB)
• Keep as few regions per region server as possible (We have around 15-35)
•For heavy write jobs:
• hbase.hregion.memstore.block.multiplier: 4
• hbase.hregion.memstore.flush.size: 134217728
• hbase.hstore.blockingStoreFiles: 100
• hbase.zookeeper.useMulti: false (This was necessary for us, we are on 0.94.2)
for stable replication
It took some performance tuning to get stability out of Hbase

More Related Content

What's hot

Dynamo db pros and cons
Dynamo db  pros and consDynamo db  pros and cons
Dynamo db pros and cons
Saniya Khalsa
 
HBaseConAsia2018: Track2-5: JanusGraph-Distributed graph database with HBase
HBaseConAsia2018: Track2-5: JanusGraph-Distributed graph database with HBaseHBaseConAsia2018: Track2-5: JanusGraph-Distributed graph database with HBase
HBaseConAsia2018: Track2-5: JanusGraph-Distributed graph database with HBase
Michael Stack
 
Apache HBase Application Archetypes
Apache HBase Application ArchetypesApache HBase Application Archetypes
Apache HBase Application Archetypes
Cloudera, Inc.
 
HBaseConAsia2018 Track2-6: Scaling 30TB's of data lake with Apache HBase and ...
HBaseConAsia2018 Track2-6: Scaling 30TB's of data lake with Apache HBase and ...HBaseConAsia2018 Track2-6: Scaling 30TB's of data lake with Apache HBase and ...
HBaseConAsia2018 Track2-6: Scaling 30TB's of data lake with Apache HBase and ...
Michael Stack
 
Characteristics of no sql databases
Characteristics of no sql databasesCharacteristics of no sql databases
Characteristics of no sql databases
Dipti Borkar
 

What's hot (20)

HBaseCon 2015 General Session: State of HBase
HBaseCon 2015 General Session: State of HBaseHBaseCon 2015 General Session: State of HBase
HBaseCon 2015 General Session: State of HBase
 
What database
What databaseWhat database
What database
 
Big Data Fundamentals in the Emerging New Data World
Big Data Fundamentals in the Emerging New Data WorldBig Data Fundamentals in the Emerging New Data World
Big Data Fundamentals in the Emerging New Data World
 
Dynamo db pros and cons
Dynamo db  pros and consDynamo db  pros and cons
Dynamo db pros and cons
 
HBaseConAsia2018: Track2-5: JanusGraph-Distributed graph database with HBase
HBaseConAsia2018: Track2-5: JanusGraph-Distributed graph database with HBaseHBaseConAsia2018: Track2-5: JanusGraph-Distributed graph database with HBase
HBaseConAsia2018: Track2-5: JanusGraph-Distributed graph database with HBase
 
HBaseCon 2015: Optimizing HBase for the Cloud in Microsoft Azure HDInsight
HBaseCon 2015: Optimizing HBase for the Cloud in Microsoft Azure HDInsightHBaseCon 2015: Optimizing HBase for the Cloud in Microsoft Azure HDInsight
HBaseCon 2015: Optimizing HBase for the Cloud in Microsoft Azure HDInsight
 
Apache HBase™
Apache HBase™Apache HBase™
Apache HBase™
 
Apache HBase Application Archetypes
Apache HBase Application ArchetypesApache HBase Application Archetypes
Apache HBase Application Archetypes
 
HBaseConAsia2018 Keynote1: Apache HBase Project Status
HBaseConAsia2018 Keynote1: Apache HBase Project StatusHBaseConAsia2018 Keynote1: Apache HBase Project Status
HBaseConAsia2018 Keynote1: Apache HBase Project Status
 
Nextag talk
Nextag talkNextag talk
Nextag talk
 
How companies use NoSQL and Couchbase
How companies use NoSQL and CouchbaseHow companies use NoSQL and Couchbase
How companies use NoSQL and Couchbase
 
HBaseConAsia2018 Track2-6: Scaling 30TB's of data lake with Apache HBase and ...
HBaseConAsia2018 Track2-6: Scaling 30TB's of data lake with Apache HBase and ...HBaseConAsia2018 Track2-6: Scaling 30TB's of data lake with Apache HBase and ...
HBaseConAsia2018 Track2-6: Scaling 30TB's of data lake with Apache HBase and ...
 
Introduction To HBase
Introduction To HBaseIntroduction To HBase
Introduction To HBase
 
Hadoop World 2011: Advanced HBase Schema Design
Hadoop World 2011: Advanced HBase Schema DesignHadoop World 2011: Advanced HBase Schema Design
Hadoop World 2011: Advanced HBase Schema Design
 
Messaging architecture @FB (Fifth Elephant Conference)
Messaging architecture @FB (Fifth Elephant Conference)Messaging architecture @FB (Fifth Elephant Conference)
Messaging architecture @FB (Fifth Elephant Conference)
 
Building robust CDC pipeline with Apache Hudi and Debezium
Building robust CDC pipeline with Apache Hudi and DebeziumBuilding robust CDC pipeline with Apache Hudi and Debezium
Building robust CDC pipeline with Apache Hudi and Debezium
 
Apache HBase - Introduction & Use Cases
Apache HBase - Introduction & Use CasesApache HBase - Introduction & Use Cases
Apache HBase - Introduction & Use Cases
 
Characteristics of no sql databases
Characteristics of no sql databasesCharacteristics of no sql databases
Characteristics of no sql databases
 
Design for Scale - Building Real Time, High Performing Marketing Technology p...
Design for Scale - Building Real Time, High Performing Marketing Technology p...Design for Scale - Building Real Time, High Performing Marketing Technology p...
Design for Scale - Building Real Time, High Performing Marketing Technology p...
 
HBaseConAsia2018 Keynote 2: Recent Development of HBase in Alibaba and Cloud
HBaseConAsia2018 Keynote 2: Recent Development of HBase in Alibaba and CloudHBaseConAsia2018 Keynote 2: Recent Development of HBase in Alibaba and Cloud
HBaseConAsia2018 Keynote 2: Recent Development of HBase in Alibaba and Cloud
 

Viewers also liked

Realtime Analytics with Hadoop and HBase
Realtime Analytics with Hadoop and HBaseRealtime Analytics with Hadoop and HBase
Realtime Analytics with Hadoop and HBase
larsgeorge
 

Viewers also liked (6)

HBaseCon 2013: Evolving a First-Generation Apache HBase Deployment to Second...
HBaseCon 2013:  Evolving a First-Generation Apache HBase Deployment to Second...HBaseCon 2013:  Evolving a First-Generation Apache HBase Deployment to Second...
HBaseCon 2013: Evolving a First-Generation Apache HBase Deployment to Second...
 
HBaseCon 2012 | Real-time Analytics with HBase - Sematext
HBaseCon 2012 | Real-time Analytics with HBase - SematextHBaseCon 2012 | Real-time Analytics with HBase - Sematext
HBaseCon 2012 | Real-time Analytics with HBase - Sematext
 
Hadoop Summit 2012 | HBase Consistency and Performance Improvements
Hadoop Summit 2012 | HBase Consistency and Performance ImprovementsHadoop Summit 2012 | HBase Consistency and Performance Improvements
Hadoop Summit 2012 | HBase Consistency and Performance Improvements
 
HBaseCon 2012 | Learning HBase Internals - Lars Hofhansl, Salesforce
HBaseCon 2012 | Learning HBase Internals - Lars Hofhansl, SalesforceHBaseCon 2012 | Learning HBase Internals - Lars Hofhansl, Salesforce
HBaseCon 2012 | Learning HBase Internals - Lars Hofhansl, Salesforce
 
Realtime Analytics with Hadoop and HBase
Realtime Analytics with Hadoop and HBaseRealtime Analytics with Hadoop and HBase
Realtime Analytics with Hadoop and HBase
 
Exploring BigData with Google BigQuery
Exploring BigData with Google BigQueryExploring BigData with Google BigQuery
Exploring BigData with Google BigQuery
 

Similar to HBaseCon 2013: Deal Personalization Engine with HBase @ Groupon

Ameya Kanitkar – Scaling Real Time Analytics with Storm & HBase - NoSQL matte...
Ameya Kanitkar – Scaling Real Time Analytics with Storm & HBase - NoSQL matte...Ameya Kanitkar – Scaling Real Time Analytics with Storm & HBase - NoSQL matte...
Ameya Kanitkar – Scaling Real Time Analytics with Storm & HBase - NoSQL matte...
NoSQLmatters
 

Similar to HBaseCon 2013: Deal Personalization Engine with HBase @ Groupon (20)

Ameya Kanitkar: Using Hadoop and HBase to Personalize Web, Mobile and Email E...
Ameya Kanitkar: Using Hadoop and HBase to Personalize Web, Mobile and Email E...Ameya Kanitkar: Using Hadoop and HBase to Personalize Web, Mobile and Email E...
Ameya Kanitkar: Using Hadoop and HBase to Personalize Web, Mobile and Email E...
 
Data warehousing in the era of Big Data: Deep Dive into Amazon Redshift
Data warehousing in the era of Big Data: Deep Dive into Amazon RedshiftData warehousing in the era of Big Data: Deep Dive into Amazon Redshift
Data warehousing in the era of Big Data: Deep Dive into Amazon Redshift
 
Data Warehouses and Data Lakes
Data Warehouses and Data LakesData Warehouses and Data Lakes
Data Warehouses and Data Lakes
 
Big Data Architectural Patterns
Big Data Architectural PatternsBig Data Architectural Patterns
Big Data Architectural Patterns
 
BDA308 Serverless Analytics with Amazon Athena and Amazon QuickSight, featuri...
BDA308 Serverless Analytics with Amazon Athena and Amazon QuickSight, featuri...BDA308 Serverless Analytics with Amazon Athena and Amazon QuickSight, featuri...
BDA308 Serverless Analytics with Amazon Athena and Amazon QuickSight, featuri...
 
Data Warehouses and Data Lakes
Data Warehouses and Data LakesData Warehouses and Data Lakes
Data Warehouses and Data Lakes
 
Data Warehouses and Data Lakes
Data Warehouses and Data LakesData Warehouses and Data Lakes
Data Warehouses and Data Lakes
 
Database and Analytics on the AWS Cloud
Database and Analytics on the AWS CloudDatabase and Analytics on the AWS Cloud
Database and Analytics on the AWS Cloud
 
Deep Dive in Big Data
Deep Dive in Big DataDeep Dive in Big Data
Deep Dive in Big Data
 
Big Data and Architectural Patterns on AWS - Pop-up Loft Tel Aviv
Big Data and Architectural Patterns on AWS - Pop-up Loft Tel AvivBig Data and Architectural Patterns on AWS - Pop-up Loft Tel Aviv
Big Data and Architectural Patterns on AWS - Pop-up Loft Tel Aviv
 
AWS re:Invent 2016: Big Data Architectural Patterns and Best Practices on AWS...
AWS re:Invent 2016: Big Data Architectural Patterns and Best Practices on AWS...AWS re:Invent 2016: Big Data Architectural Patterns and Best Practices on AWS...
AWS re:Invent 2016: Big Data Architectural Patterns and Best Practices on AWS...
 
AWS Analytics Experience Argentina - Intro
AWS Analytics Experience Argentina - IntroAWS Analytics Experience Argentina - Intro
AWS Analytics Experience Argentina - Intro
 
Real-time Analytics with Open-Source
Real-time Analytics with Open-SourceReal-time Analytics with Open-Source
Real-time Analytics with Open-Source
 
Big Data Architecture and Design Patterns
Big Data Architecture and Design PatternsBig Data Architecture and Design Patterns
Big Data Architecture and Design Patterns
 
(BDT310) Big Data Architectural Patterns and Best Practices on AWS
(BDT310) Big Data Architectural Patterns and Best Practices on AWS(BDT310) Big Data Architectural Patterns and Best Practices on AWS
(BDT310) Big Data Architectural Patterns and Best Practices on AWS
 
Rebuilding from MongoDB for Scale on HBase
Rebuilding from MongoDB for Scale on HBaseRebuilding from MongoDB for Scale on HBase
Rebuilding from MongoDB for Scale on HBase
 
Ameya Kanitkar – Scaling Real Time Analytics with Storm & HBase - NoSQL matte...
Ameya Kanitkar – Scaling Real Time Analytics with Storm & HBase - NoSQL matte...Ameya Kanitkar – Scaling Real Time Analytics with Storm & HBase - NoSQL matte...
Ameya Kanitkar – Scaling Real Time Analytics with Storm & HBase - NoSQL matte...
 
Best Practices for Building a Data Lake on AWS
Best Practices for Building a Data Lake on AWSBest Practices for Building a Data Lake on AWS
Best Practices for Building a Data Lake on AWS
 
February 2016 Webinar Series - Architectural Patterns for Big Data on AWS
February 2016 Webinar Series - Architectural Patterns for Big Data on AWSFebruary 2016 Webinar Series - Architectural Patterns for Big Data on AWS
February 2016 Webinar Series - Architectural Patterns for Big Data on AWS
 
AWS November Webinar Series - Architectural Patterns & Best Practices for Big...
AWS November Webinar Series - Architectural Patterns & Best Practices for Big...AWS November Webinar Series - Architectural Patterns & Best Practices for Big...
AWS November Webinar Series - Architectural Patterns & Best Practices for Big...
 

More from Cloudera, Inc.

More from Cloudera, Inc. (20)

Partner Briefing_January 25 (FINAL).pptx
Partner Briefing_January 25 (FINAL).pptxPartner Briefing_January 25 (FINAL).pptx
Partner Briefing_January 25 (FINAL).pptx
 
Cloudera Data Impact Awards 2021 - Finalists
Cloudera Data Impact Awards 2021 - Finalists Cloudera Data Impact Awards 2021 - Finalists
Cloudera Data Impact Awards 2021 - Finalists
 
2020 Cloudera Data Impact Awards Finalists
2020 Cloudera Data Impact Awards Finalists2020 Cloudera Data Impact Awards Finalists
2020 Cloudera Data Impact Awards Finalists
 
Edc event vienna presentation 1 oct 2019
Edc event vienna presentation 1 oct 2019Edc event vienna presentation 1 oct 2019
Edc event vienna presentation 1 oct 2019
 
Machine Learning with Limited Labeled Data 4/3/19
Machine Learning with Limited Labeled Data 4/3/19Machine Learning with Limited Labeled Data 4/3/19
Machine Learning with Limited Labeled Data 4/3/19
 
Data Driven With the Cloudera Modern Data Warehouse 3.19.19
Data Driven With the Cloudera Modern Data Warehouse 3.19.19Data Driven With the Cloudera Modern Data Warehouse 3.19.19
Data Driven With the Cloudera Modern Data Warehouse 3.19.19
 
Introducing Cloudera DataFlow (CDF) 2.13.19
Introducing Cloudera DataFlow (CDF) 2.13.19Introducing Cloudera DataFlow (CDF) 2.13.19
Introducing Cloudera DataFlow (CDF) 2.13.19
 
Introducing Cloudera Data Science Workbench for HDP 2.12.19
Introducing Cloudera Data Science Workbench for HDP 2.12.19Introducing Cloudera Data Science Workbench for HDP 2.12.19
Introducing Cloudera Data Science Workbench for HDP 2.12.19
 
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
 
Leveraging the cloud for analytics and machine learning 1.29.19
Leveraging the cloud for analytics and machine learning 1.29.19Leveraging the cloud for analytics and machine learning 1.29.19
Leveraging the cloud for analytics and machine learning 1.29.19
 
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
 
Leveraging the Cloud for Big Data Analytics 12.11.18
Leveraging the Cloud for Big Data Analytics 12.11.18Leveraging the Cloud for Big Data Analytics 12.11.18
Leveraging the Cloud for Big Data Analytics 12.11.18
 
Modern Data Warehouse Fundamentals Part 3
Modern Data Warehouse Fundamentals Part 3Modern Data Warehouse Fundamentals Part 3
Modern Data Warehouse Fundamentals Part 3
 
Modern Data Warehouse Fundamentals Part 2
Modern Data Warehouse Fundamentals Part 2Modern Data Warehouse Fundamentals Part 2
Modern Data Warehouse Fundamentals Part 2
 
Modern Data Warehouse Fundamentals Part 1
Modern Data Warehouse Fundamentals Part 1Modern Data Warehouse Fundamentals Part 1
Modern Data Warehouse Fundamentals Part 1
 
Extending Cloudera SDX beyond the Platform
Extending Cloudera SDX beyond the PlatformExtending Cloudera SDX beyond the Platform
Extending Cloudera SDX beyond the Platform
 
Federated Learning: ML with Privacy on the Edge 11.15.18
Federated Learning: ML with Privacy on the Edge 11.15.18Federated Learning: ML with Privacy on the Edge 11.15.18
Federated Learning: ML with Privacy on the Edge 11.15.18
 
Analyst Webinar: Doing a 180 on Customer 360
Analyst Webinar: Doing a 180 on Customer 360Analyst Webinar: Doing a 180 on Customer 360
Analyst Webinar: Doing a 180 on Customer 360
 
Build a modern platform for anti-money laundering 9.19.18
Build a modern platform for anti-money laundering 9.19.18Build a modern platform for anti-money laundering 9.19.18
Build a modern platform for anti-money laundering 9.19.18
 
Introducing the data science sandbox as a service 8.30.18
Introducing the data science sandbox as a service 8.30.18Introducing the data science sandbox as a service 8.30.18
Introducing the data science sandbox as a service 8.30.18
 

Recently uploaded

Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
FIDO Alliance
 
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
panagenda
 
Breaking Down the Flutterwave Scandal What You Need to Know.pdf
Breaking Down the Flutterwave Scandal What You Need to Know.pdfBreaking Down the Flutterwave Scandal What You Need to Know.pdf
Breaking Down the Flutterwave Scandal What You Need to Know.pdf
UK Journal
 

Recently uploaded (20)

Intro in Product Management - Коротко про професію продакт менеджера
Intro in Product Management - Коротко про професію продакт менеджераIntro in Product Management - Коротко про професію продакт менеджера
Intro in Product Management - Коротко про професію продакт менеджера
 
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
 
AI mind or machine power point presentation
AI mind or machine power point presentationAI mind or machine power point presentation
AI mind or machine power point presentation
 
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
 
Easier, Faster, and More Powerful – Notes Document Properties Reimagined
Easier, Faster, and More Powerful – Notes Document Properties ReimaginedEasier, Faster, and More Powerful – Notes Document Properties Reimagined
Easier, Faster, and More Powerful – Notes Document Properties Reimagined
 
ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
 
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
 
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdfHow Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
 
State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!
 
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
 
ADP Passwordless Journey Case Study.pptx
ADP Passwordless Journey Case Study.pptxADP Passwordless Journey Case Study.pptx
ADP Passwordless Journey Case Study.pptx
 
1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT
1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT
1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT
 
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
 
Continuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
Continuing Bonds Through AI: A Hermeneutic Reflection on ThanabotsContinuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
Continuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
 
Working together SRE & Platform Engineering
Working together SRE & Platform EngineeringWorking together SRE & Platform Engineering
Working together SRE & Platform Engineering
 
2024 May Patch Tuesday
2024 May Patch Tuesday2024 May Patch Tuesday
2024 May Patch Tuesday
 
Oauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoftOauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoft
 
TopCryptoSupers 12thReport OrionX May2024
TopCryptoSupers 12thReport OrionX May2024TopCryptoSupers 12thReport OrionX May2024
TopCryptoSupers 12thReport OrionX May2024
 
Breaking Down the Flutterwave Scandal What You Need to Know.pdf
Breaking Down the Flutterwave Scandal What You Need to Know.pdfBreaking Down the Flutterwave Scandal What You Need to Know.pdf
Breaking Down the Flutterwave Scandal What You Need to Know.pdf
 

HBaseCon 2013: Deal Personalization Engine with HBase @ Groupon

Editor's Notes

  1. Split this into 2-3 slides
  2. Split this into 2-3 slides
  3. Split this into 2-3 slides
  4. Will be used as a back up slide. If there are specific questions regarding performance tuning.