Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Ab-initio theory of luminescence
Claudio  Attaccalite 
 Universidad del Pais Vasco (San Sebastian)     
My Scientific Journey
o
2001-2002 Master at SISSA Trieste:
“ Gutzwiller wave-function for
multi-band Hubbard model"
2002-2...
My research topics
Ground State
properties
of correlated systems
by
Quantum Monte Carlo
Theoretical
spectroscopy of
comple...
The 2D electron gas: the phase diagram
We found a new phase
of the 2D electron gas at low density
a stable spin polarized ...
Cluster and molecules
We introduced the Pauling idea  
 “Resonance Valence Bond” 
in an efficient way in Quantum Monte Car...
New ab­initio molecular­dynamics with QMC
Attaccalite C. and Sorella S. 
Phys. Rev. Lett. 100 , 114501 (2008) 
 First fini...
Quasiparticle band structure of 
graphene and its compounds
Effect of correlation on graphite
from theory and experiments
...
Phonons and Correlation
Raman D­line dispersion IXS measurements
We introduce correlation effects in the electron­
phonon ...
Role of defects on the optical properties of BN 
nanostructure
L. Wirtz, A. Marini, M. Gruning, C. Attaccalite et al.
(Com...
What I'm doing now
● Mott transition on
a hydrogen chain
● Ground state of High-Tc
superconductors using
QMC
● Role of def...
Expertise in ab-initio calculation of response functions
phonons, Raman spectroscopy, optics, quasiparticles (ARPES)
Knowl...
Luminescence
by using 
non­equilibrium Green Function
Prospective:
1) Luminescence:
Catho and photo luminescence
Create a theoretical and computational tool 
to study and predi...
Working Plan
I. Real-time dynamics of electrons
by using Non-Equilibrium Green Functions.
Luminescence of bulk materials
I...
Ab­initio Approach
The single particle electronic states are first
evaluated using density functional theory (DFT)
Startin...
Expected results and benefits
I. Reproduce and predict luminescence 
II. Nanostructures characterization 
   through their...
Integration of the project at NEEL
Experimental Collaborations:
Equipe: A. Ibanez
luminescence from new materials: nano-cr...
Merci de votre
attention
Upcoming SlideShare
Loading in …5
×

CNRS presentation

900 views

Published on

My presentation for the CNRS competition section 3 (condensed matter theory)

Published in: Education
  • Be the first to comment

  • Be the first to like this

CNRS presentation

  1. 1. Ab-initio theory of luminescence Claudio  Attaccalite   Universidad del Pais Vasco (San Sebastian)     
  2. 2. My Scientific Journey o 2001-2002 Master at SISSA Trieste: “ Gutzwiller wave-function for multi-band Hubbard model" 2002-2005 PhD at SISSA Trieste: “Ab-initio Molecular Dynamics for high pressure hydrogen" 2006-2007 PostDoc at IEMN, Lille “Optical Properties of Nanostructure" 2008-present PostDoc at Universidad del Pais Vasco “Non-equilibrium Green Functions” 2001 B.S. "La Sapienza" University Rome: “ Correlation energy and spin polarization in the 2D electron gas" ?
  3. 3. My research topics Ground State properties of correlated systems by Quantum Monte Carlo Theoretical spectroscopy of complex nanostructures by Density Functional Theory &Many-Body Pert. Theory
  4. 4. The 2D electron gas: the phase diagram We found a new phase of the 2D electron gas at low density a stable spin polarized phase before the Wigner crystallization. Spin Unpolarized phase Spin Polarized phase Wigner Crystal C. Attaccalite, P. Gori Giorgi, S. Moroni, G. B. Bachelet Phys. Rev. Lett. 88, 256601 (2002) [160 citations!] P. Gori Giorgi, C. Attaccalite, S. Moroni, G. B. Bachelet Intern. Journ. of Quant. Chem. 91, Issue 2 ,126 (2003) Polarized Unpolarized
  5. 5. Cluster and molecules We introduced the Pauling idea    “Resonance Valence Bond”  in an efficient way in Quantum Monte Carlo Casula M, Attaccalite C, Sorella S J. Chem. Phys. 121,   7110 (2004) Casula M, Yunoki S, Attaccalite C, et al. Comp. Phys. Comm. 169, 386 (2005) D. Nissenbaum, L. Spanu, C. Attaccalite et al. Phys. Rev. B 79, 035416 (2009) Resonance in Li4 cluster
  6. 6. New ab­initio molecular­dynamics with QMC Attaccalite C. and Sorella S.  Phys. Rev. Lett. 100 , 114501 (2008)   First finite­temperature simulation using QMC forces  Melting curve of Hydrogen at extreme conditions 
  7. 7. Quasiparticle band structure of  graphene and its compounds Effect of correlation on graphite from theory and experiments A. Gruenis. C. Attaccalite et al. Phys. Rev. Lett. 100, 037601 (2008) C. Attaccalite et. al. http://arxiv.org/abs/0808.0786 A. Gruenis. C. Attaccalite et al. Phys. Rev.B 78 205425 (2008) LDA calculation GW calc. (incl. e-e correlation)
  8. 8. Phonons and Correlation Raman D­line dispersion IXS measurements We introduce correlation effects in the electron­ phonon coupling in terms of a screened Coulomb  interaction to correct the DFT(LDA) results.  M. Lazzeri, C. Attaccalite et al. Phys. Rev. B. Rapid. Comm. 78 081406 (2008) C. Attaccalite et al. ..in preparation...
  9. 9. Role of defects on the optical properties of BN  nanostructure L. Wirtz, A. Marini, M. Gruning, C. Attaccalite et al. (Comment) Phys. Rev. Lett. 100, 189701 (2008) Attaccalite C L. Wirtz, A. Marini and A. Rubio Physica Status Solidi, 244, 4288(2007) defects + electric field = a tunable light emission device
  10. 10. What I'm doing now ● Mott transition on a hydrogen chain ● Ground state of High-Tc superconductors using QMC ● Role of defects on optical properties ● Real-time dynamics of electrons
  11. 11. Expertise in ab-initio calculation of response functions phonons, Raman spectroscopy, optics, quasiparticles (ARPES) Knowledge in correlated and low dimensional systems 2D-electron gas, graphene, molecules and clusters Ability in Modeling exc functionals, tight-binding for graphene, Hubbard model Code development Developers of the TURBORVB (Quantum Monte Carlo code) group at SISSA/ISAS Collaborator of YAMBO (Many-Body Perturbation Theory Calculations) at Univ. Roma 2 Author of QumaX advanced C++ code for electronic structure calculations My Expertise oo
  12. 12. Luminescence by using  non­equilibrium Green Function
  13. 13. Prospective: 1) Luminescence: Catho and photo luminescence Create a theoretical and computational tool  to study and predict light emission 3) Non­linear Optics,  optical gain, Optical Switching 2) Role of temperature,  defects and confinement
  14. 14. Working Plan I. Real-time dynamics of electrons by using Non-Equilibrium Green Functions. Luminescence of bulk materials II.Electron-phonon coupling. Relaxation through emission of phonons. Luminescence from indirect-gap systems III.Forces in the excited state. Luminescence from cluster, wires, polymers and defects (exciton trapping) i ∂ ∂ t1 −H0G  t1, t2=[U t1 HF t1]G  t1, t2I  t1, t2 k  t1, t2=i ∑q gq 2 Dq  t1, t2Gk −q  t1, t2
  15. 15. Ab­initio Approach The single particle electronic states are first evaluated using density functional theory (DFT) Starting from the material atomic configuration parameter-free Why Non­equilibrium  Green Functions? Systematic approach to progressively include electronic correlation and electron-phonon interaction Can be used as starting point to derive approximate theory (Kinetic equations, Bloch equations, Boltzmann equations) G t1, t2=i 〈a t2at1〉 G t1, t2=−i 〈at1a t2〉
  16. 16. Expected results and benefits I. Reproduce and predict luminescence  II. Nanostructures characterization     through their spectroscopic properties   III. To Target experiments towards the      most promising structure and materials    IV. Developing of an Open Source code      for  calculations of optical properties 
  17. 17. Integration of the project at NEEL Experimental Collaborations: Equipe: A. Ibanez luminescence from new materials: nano-crystals, glasses. In collaboration with the LETIMINATEC Equipe: B. Boulanger non-linear optics and luminescence V. Olevano theoretical spectroscopy, linear response approach Theoretical Collaborations: X. Blasé and D. Mayou transport in nanostructure International Collaborations: European Theoretical Spectroscopy Facility
  18. 18. Merci de votre attention

×