SlideShare a Scribd company logo

割闌尾V計畫--罷免資料視覺化

割闌尾V計畫,罷免資料視覺化

1 of 10
Download to read offline
罷免資料視覺化	
  
by	
  Mark	
  Chang	
  
罷免第二階段門檻高	
  
•  期限:30天	
  
•  連署書:50000份	
  
•  平均1666份/日	
  
•  以往經驗	
  
	
  每志工:10份/每小時	
  
割闌尾V計畫	
  
•  一個月的門檻,一天之內超越	
  
•  招募數千志工,在投開票所收集連署書	
  
如何達成?	
  
•  以遊戲的形式	
  
– 招募志工	
  
– 徵求物資	
  
– 收集連署書	
  
割闌尾V計畫--罷免資料視覺化
割闌尾V計畫--罷免資料視覺化

Recommended

进一步完善完美化共产主义社区
进一步完善完美化共产主义社区进一步完善完美化共产主义社区
进一步完善完美化共产主义社区Baishen Cao
 
2018新女光(1)
2018新女光(1)2018新女光(1)
2018新女光(1)CBCWD
 
Wide Coverage Semantic Representations from a CCG Parser
Wide Coverage Semantic Representations from a CCG ParserWide Coverage Semantic Representations from a CCG Parser
Wide Coverage Semantic Representations from a CCG ParserMark Chang
 
民主的網路世代—推動罷免的工程師們
民主的網路世代—推動罷免的工程師們民主的網路世代—推動罷免的工程師們
民主的網路世代—推動罷免的工程師們Mark Chang
 
Neural Language Model Tutorial
Neural Language Model Tutorial Neural Language Model Tutorial
Neural Language Model Tutorial Mark Chang
 
Neural Network and NLP
Neural Network and NLPNeural Network and NLP
Neural Network and NLPMark Chang
 
Language Understanding for Text-based Games using Deep Reinforcement Learning
Language Understanding for Text-based Games using Deep Reinforcement LearningLanguage Understanding for Text-based Games using Deep Reinforcement Learning
Language Understanding for Text-based Games using Deep Reinforcement LearningMark Chang
 
Computational Linguistics week 5
Computational Linguistics  week 5Computational Linguistics  week 5
Computational Linguistics week 5Mark Chang
 

More Related Content

Viewers also liked

自然語言處理簡介
自然語言處理簡介自然語言處理簡介
自然語言處理簡介Mark Chang
 
Language Modeling Tutorial
Language Modeling Tutorial Language Modeling Tutorial
Language Modeling Tutorial Mark Chang
 
Discourse Representation Theory
Discourse Representation TheoryDiscourse Representation Theory
Discourse Representation TheoryMark Chang
 
Computational Poetry 電腦賦詩
Computational Poetry 電腦賦詩Computational Poetry 電腦賦詩
Computational Poetry 電腦賦詩Mark Chang
 
藏頭詩產生器
藏頭詩產生器藏頭詩產生器
藏頭詩產生器Mark Chang
 
Neural Turing Machine Tutorial
Neural Turing Machine TutorialNeural Turing Machine Tutorial
Neural Turing Machine TutorialMark Chang
 
Image completion
Image completionImage completion
Image completionMark Chang
 
Chinese Words Segmentation Tutorial
Chinese Words Segmentation Tutorial Chinese Words Segmentation Tutorial
Chinese Words Segmentation Tutorial Mark Chang
 
Neural Art (English Version)
Neural Art (English Version)Neural Art (English Version)
Neural Art (English Version)Mark Chang
 
NeuralArt 電腦作畫
NeuralArt 電腦作畫NeuralArt 電腦作畫
NeuralArt 電腦作畫Mark Chang
 
Machine Learning Introduction
Machine Learning IntroductionMachine Learning Introduction
Machine Learning IntroductionMark Chang
 
AlphaGo in Depth
AlphaGo in Depth AlphaGo in Depth
AlphaGo in Depth Mark Chang
 
Generative Adversarial Networks
Generative Adversarial NetworksGenerative Adversarial Networks
Generative Adversarial NetworksMark Chang
 

Viewers also liked (13)

自然語言處理簡介
自然語言處理簡介自然語言處理簡介
自然語言處理簡介
 
Language Modeling Tutorial
Language Modeling Tutorial Language Modeling Tutorial
Language Modeling Tutorial
 
Discourse Representation Theory
Discourse Representation TheoryDiscourse Representation Theory
Discourse Representation Theory
 
Computational Poetry 電腦賦詩
Computational Poetry 電腦賦詩Computational Poetry 電腦賦詩
Computational Poetry 電腦賦詩
 
藏頭詩產生器
藏頭詩產生器藏頭詩產生器
藏頭詩產生器
 
Neural Turing Machine Tutorial
Neural Turing Machine TutorialNeural Turing Machine Tutorial
Neural Turing Machine Tutorial
 
Image completion
Image completionImage completion
Image completion
 
Chinese Words Segmentation Tutorial
Chinese Words Segmentation Tutorial Chinese Words Segmentation Tutorial
Chinese Words Segmentation Tutorial
 
Neural Art (English Version)
Neural Art (English Version)Neural Art (English Version)
Neural Art (English Version)
 
NeuralArt 電腦作畫
NeuralArt 電腦作畫NeuralArt 電腦作畫
NeuralArt 電腦作畫
 
Machine Learning Introduction
Machine Learning IntroductionMachine Learning Introduction
Machine Learning Introduction
 
AlphaGo in Depth
AlphaGo in Depth AlphaGo in Depth
AlphaGo in Depth
 
Generative Adversarial Networks
Generative Adversarial NetworksGenerative Adversarial Networks
Generative Adversarial Networks
 

More from Mark Chang

Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationMark Chang
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationMark Chang
 
Information in the Weights
Information in the WeightsInformation in the Weights
Information in the WeightsMark Chang
 
Information in the Weights
Information in the WeightsInformation in the Weights
Information in the WeightsMark Chang
 
PAC Bayesian for Deep Learning
PAC Bayesian for Deep LearningPAC Bayesian for Deep Learning
PAC Bayesian for Deep LearningMark Chang
 
PAC-Bayesian Bound for Deep Learning
PAC-Bayesian Bound for Deep LearningPAC-Bayesian Bound for Deep Learning
PAC-Bayesian Bound for Deep LearningMark Chang
 
Domain Adaptation
Domain AdaptationDomain Adaptation
Domain AdaptationMark Chang
 
NTU ML TENSORFLOW
NTU ML TENSORFLOWNTU ML TENSORFLOW
NTU ML TENSORFLOWMark Chang
 
NTHU AI Reading Group: Improved Training of Wasserstein GANs
NTHU AI Reading Group: Improved Training of Wasserstein GANsNTHU AI Reading Group: Improved Training of Wasserstein GANs
NTHU AI Reading Group: Improved Training of Wasserstein GANsMark Chang
 
Applied Deep Learning 11/03 Convolutional Neural Networks
Applied Deep Learning 11/03 Convolutional Neural NetworksApplied Deep Learning 11/03 Convolutional Neural Networks
Applied Deep Learning 11/03 Convolutional Neural NetworksMark Chang
 
The Genome Assembly Problem
The Genome Assembly ProblemThe Genome Assembly Problem
The Genome Assembly ProblemMark Chang
 
DRAW: Deep Recurrent Attentive Writer
DRAW: Deep Recurrent Attentive WriterDRAW: Deep Recurrent Attentive Writer
DRAW: Deep Recurrent Attentive WriterMark Chang
 
淺談深度學習
淺談深度學習淺談深度學習
淺談深度學習Mark Chang
 
Variational Autoencoder
Variational AutoencoderVariational Autoencoder
Variational AutoencoderMark Chang
 
TensorFlow 深度學習快速上手班--深度學習
 TensorFlow 深度學習快速上手班--深度學習 TensorFlow 深度學習快速上手班--深度學習
TensorFlow 深度學習快速上手班--深度學習Mark Chang
 
TensorFlow 深度學習快速上手班--電腦視覺應用
TensorFlow 深度學習快速上手班--電腦視覺應用TensorFlow 深度學習快速上手班--電腦視覺應用
TensorFlow 深度學習快速上手班--電腦視覺應用Mark Chang
 
TensorFlow 深度學習快速上手班--自然語言處理應用
TensorFlow 深度學習快速上手班--自然語言處理應用TensorFlow 深度學習快速上手班--自然語言處理應用
TensorFlow 深度學習快速上手班--自然語言處理應用Mark Chang
 
TensorFlow 深度學習快速上手班--機器學習
TensorFlow 深度學習快速上手班--機器學習TensorFlow 深度學習快速上手班--機器學習
TensorFlow 深度學習快速上手班--機器學習Mark Chang
 
Computational Linguistics week 10
 Computational Linguistics week 10 Computational Linguistics week 10
Computational Linguistics week 10Mark Chang
 

More from Mark Chang (20)

Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential Equation
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential Equation
 
Information in the Weights
Information in the WeightsInformation in the Weights
Information in the Weights
 
Information in the Weights
Information in the WeightsInformation in the Weights
Information in the Weights
 
PAC Bayesian for Deep Learning
PAC Bayesian for Deep LearningPAC Bayesian for Deep Learning
PAC Bayesian for Deep Learning
 
PAC-Bayesian Bound for Deep Learning
PAC-Bayesian Bound for Deep LearningPAC-Bayesian Bound for Deep Learning
PAC-Bayesian Bound for Deep Learning
 
Domain Adaptation
Domain AdaptationDomain Adaptation
Domain Adaptation
 
NTU ML TENSORFLOW
NTU ML TENSORFLOWNTU ML TENSORFLOW
NTU ML TENSORFLOW
 
NTHU AI Reading Group: Improved Training of Wasserstein GANs
NTHU AI Reading Group: Improved Training of Wasserstein GANsNTHU AI Reading Group: Improved Training of Wasserstein GANs
NTHU AI Reading Group: Improved Training of Wasserstein GANs
 
Applied Deep Learning 11/03 Convolutional Neural Networks
Applied Deep Learning 11/03 Convolutional Neural NetworksApplied Deep Learning 11/03 Convolutional Neural Networks
Applied Deep Learning 11/03 Convolutional Neural Networks
 
The Genome Assembly Problem
The Genome Assembly ProblemThe Genome Assembly Problem
The Genome Assembly Problem
 
DRAW: Deep Recurrent Attentive Writer
DRAW: Deep Recurrent Attentive WriterDRAW: Deep Recurrent Attentive Writer
DRAW: Deep Recurrent Attentive Writer
 
淺談深度學習
淺談深度學習淺談深度學習
淺談深度學習
 
Variational Autoencoder
Variational AutoencoderVariational Autoencoder
Variational Autoencoder
 
TensorFlow 深度學習快速上手班--深度學習
 TensorFlow 深度學習快速上手班--深度學習 TensorFlow 深度學習快速上手班--深度學習
TensorFlow 深度學習快速上手班--深度學習
 
TensorFlow 深度學習快速上手班--電腦視覺應用
TensorFlow 深度學習快速上手班--電腦視覺應用TensorFlow 深度學習快速上手班--電腦視覺應用
TensorFlow 深度學習快速上手班--電腦視覺應用
 
TensorFlow 深度學習快速上手班--自然語言處理應用
TensorFlow 深度學習快速上手班--自然語言處理應用TensorFlow 深度學習快速上手班--自然語言處理應用
TensorFlow 深度學習快速上手班--自然語言處理應用
 
TensorFlow 深度學習快速上手班--機器學習
TensorFlow 深度學習快速上手班--機器學習TensorFlow 深度學習快速上手班--機器學習
TensorFlow 深度學習快速上手班--機器學習
 
Computational Linguistics week 10
 Computational Linguistics week 10 Computational Linguistics week 10
Computational Linguistics week 10
 
Neural Doodle
Neural DoodleNeural Doodle
Neural Doodle
 

割闌尾V計畫--罷免資料視覺化