One of Crystal\'s publications


Published on

Crystal\'s first-authored publication (based on Masters research).

Published in: Technology, Health & Medicine
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

One of Crystal\'s publications

  1. 1. Human Nutrition and Metabolism—Research Communication Four-Day Multimedia Diet Records incidence and in setting energy requirements for populations. However, self-reported intakes have been questioned due to Underestimate Energy Needs in the inconsistencies between estimations from recorded food intakes and energy expenditures determined by biological Middle-Aged and Elderly Women as markers such as doubly-labeled water (DLW)3 or other meth- Determined by Doubly-Labeled ods of indirect calorimetry (Bingham et al. 1995, Goran and Water1 Poehlman 1992, Johnson et al. 1994, Martin et al. 1996). Several methods exist for dietary intake assessment; however, since these are based on factual approaches using reported (Manuscript received 4 August 1999. Initial review completed 21 intakes, their validity is controversial. The reliability and October 1999. Revision accepted 5 January 2000.) validity of these methods hinge on subject compliance, inter- viewer skill, nutrient database appropriateness and quality of Crystal H. Kaczkowski, Peter J. H. Jones,2 Jianying Feng and the training given to subjects for dietary reporting (Dwyer Henry S. Bayley 1994). School of Dietetics and Human Nutrition, Macdonald Campus of The DLW technique is ideal for assessing energy expendi- McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada ture because it is nonradioactive and noninvasive; thus, sub- jects can carry out their daily activities without being aware ABSTRACT Systematic problems exist in the quantification that they are being studied. In weight-stable individuals, en- of food intake in populations using traditional self-reported ergy expenditure must equal energy intake. This equilibrium measures. The objective of this study was to determine the provides a means of validating methods of assessing food effectiveness of an innovative multimedia diet record (MMDR) intake. The purpose of the current study was to compare the for dietary energy intake assessment. Dietary intake was es- energy intakes estimated from 4 d multimedia diet records timated by combining the use of a microcassette tape re- (MMDR) using self-reported intakes with measured energy corder and 35-mm camera in 53 women whose ages ranged expenditures using DLW. A population sample of middle-aged from 50 to 93 y (64.9 11.3 y), with body weights of 62.4 12.2 and elderly Canadian women was used in this study. To kg and body mass indexes (BMI) of 24.4 4.0 kg/m2. Using facilitate the recording of food intake, a novel multimedia household measures, subjects voice-recorded and photo- dietary assessment method was developed utilizing a tape re- graphed all food and beverages consumed for four consecu- corder and camera in an attempt to more accurately quantify tive days. A two-point doubly-labeled water (DLW) method energy intake and improve upon traditional methods. It was was used over 13 d to calculate carbon dioxide production, expected that the MMDR would reduce subject burden and total body water, and subsequently, total energy expenditure thus reduce the frequency of omission of food items from the (TEE) through the use of a food quotient. Mean body weight MMDR, therefore, increasing the agreement between reported did not change between d 1 and 14. TEE and reported energy energy intake and measured expenditure in weight-stable in- intake were compared using MMDR. Mean reported energy dividuals. intakes 7.5 1.9 MJ/d (1774 476 kcal/d) were lower (P < 0.01) than TEE by 10.4 3.1 MJ/d (2477 736 kcal/d), MATERIALS AND METHODS indicating underreporting of food intake. Reporting accuracy A total of 73 women were recruited for the study from Montreal (reported energy intake/TEE 100%) was 76.0 22.9%. Mean and surrounding areas by newspaper articles, radio and posted adver- energy expenditure (MJ/d), as determined by doubly-labeled tisements. The women either attended an introductory meeting re- water, was higher (P < 0.01) in each stratified age range when garding study participation or were recruited to participate by tele- compared to reported energy intake by MMDR. There were phone. A medical screening questionnaire was completed by the no significant differences in reporting accuracy among the study coordinator in person or by telephone regarding medical his- stratified age groups. Using the MMDR method, this popula- tory. Subjects were also asked about their weight history in the tion of weight-stable women underreported their food intakes previous 6 mo and any use of diuretics, appetite suppressants, nico- compared to their determined energy expenditure estimated tine, caffeine or alcohol. The study protocol excluded women who were taking 1 mg/d of thyroid hormone medication and whose by DLW. J. Nutr. 130: 802– 805, 2000. weight had changed 4 kg in the previous 6 mo. Prior to study KEY WORDS: ● total energy expenditure ● energy intake commencement, the women were informed of study protocol and doubly-labeled water ● dietary assessment ● humans ● gave signed consent. The project was approved by the McGill Uni- versity Ethics Committee. The novel method of dietary intake assessment was developed by Accuracy in dietary intake assessment is crucial for drawing combining the use of a microcassette tape recorder and 35-mm associations between food intake, energy balance and disease 3 Abbreviations used: APE, atom percentage excess; BMI, body mass index; 1 Financial support for project research from the National Health Research and BMR, basal metabolic rate; DLW, doubly-labeled water; FFM, fat-free mass; Development Program of Canada. IRMS, isotope ratio mass spectrometry; MMDR, multimedia diet record; TBW, 2 To whom correspondence should be addressed. total body water; TEE, total energy expenditure. 0022-3166/00 $3.00 © 2000 American Society for Nutritional Sciences. 802
  2. 2. MULTIMEDIA DIET RECORDS UNDERESTIMATE ENERGY NEEDS 803 camera. In an effort to ensure accurate and complete food records, the R carbon dioxide 0.462TBW 1.01k 0 1.04k h (1) subjects were provided a training session prior to the study com- The rate of CO2 production is represented by R, TBW is determined mencement. Subjects were supplied with standard household mea- based on d 1 or 14 (kg). The elimination rates of H218O and D2O are surements, a ruler, a 35-mm camera and a microcassette tape recorder designated by ko and kh, respectively. A standard respiratory quotient to measure and record all foods and beverages consumed and leftover of 0.85 was used for all subjects to prevent bias due to inaccuracies in for 4 d. Food habits differ on weekends and weekdays (Beaton 1994). food recording. Considering these day-to-day variations, the subjects were assigned a Data are presented as means SD To compare anthropometric Wednesday-Saturday or Sunday-Wednesday recording period. Sub- variables, TEE, and reporting accuracy with age, women were strat- jects recorded their intake from morning to bedtime on d 4 –7 or 7–11 ified into 49 –59, 60 – 69, 70 –79 and 80 y age groups. Reporting of the study period. Copies of recipes for homemade meals and labels accuracy was expressed as mean reported intake by MMDR in MJ/d from ready-to-eat preparations were requested, as well as specifica- divided by mean TEE/day 100. Data were analyzed with the tions regarding the method of preparation and cooking. Subjects were Student-Newman-Keuls test, and differences among age groups were asked not to alter their dietary patterns during the study period so considered significant when P 0.05. The SAS statistical package that the MMDR would be typical of their usual dietary habits. was used (SAS Institute, Cary, NC). Subjects who did not maintain a record for 4 d were excluded from the study. Food records were analyzed using Food Processor 5.0, ESHA (Portland, OR). When transposing taped records into written RESULTS records, pictures were used for cross-referencing dietary intake reports to determine if foods in taped records and photographs corresponded, Selected characteristics of the 53 subjects are presented by but were not used for quantification of energy intake. stratified age groups in Table 1. Twenty subjects were ex- To calculate total energy expenditure (TEE), a two-point DLW cluded from the analyses. Seventeen subjects’ food records method was used. Baseline urine and saliva samples were collected were excluded due to incompleteness or technical difficulties and a dose of DLW was administered based on estimated body water with the recording equipment. Two subjects’ analytical results (body weight 50%) to the fasted subjects. The dose of 2.5 g H18 O/kg [10% atom percentage excess (APE)] and 0.12 g D2O/kg suggested a higher turnover of hydrogen than oxygen. One 2 (99.9% APE) estimated body water was followed by a 50-mL rinse of subject’s analytical results suggested a TEE of 25.2 MJ/d (6022 fruit juice and a muffin. Subjects were asked to abstain from food and kcal/d). This subject’s TEE was considered physiologically minimize water intake for 4 h and to collect a saliva sample for unlikely and was excluded from the analyses. There were no determination of body water at 3 and 4 h postdose. Subjects were body weight changes between d 1 (62.9 12.2 kg) and d 14 given urine sample bottles to collect a second void sample at 24 h. On (62.8 11.8 kg) or between TBW estimations for d 0 (30.4 d 7, the women visited the study location and gave a second void 9.1 kg) by 2H2 O analysis. The 7.1 kg) and d 14 (29.6 urine sample and brought in the frozen samples previously collected. decay rates of H2 O (ko) and 2H2O (kh) for d 1 and 14 were 18 On d 14, fasting subjects returned to the study location and gave 0.12 0.03 and 0.09 0.02 pools/d, respectively. Carbon another second void urine sample and a saliva sample. A 200 g/L dioxide production (rCO2) was 11.3 3.2 (mol/d). solution of D2O (0.12 g/kg estimated body water) in tap water was taken orally and rinsed with 50 mL fruit juice. A muffin was again The study subjects reported significantly lower energy in- provided to break the fast. At 3 and 4 h postdose, subjects were takes 7.5 1.9 MJ/d (1774 476 kcal/d) than their TEE instructed to provide saliva samples for a second estimate of body determined by DLW 10.4 3.1 MJ/d (2477 729 kcal/d), (P water. All collected samples were stored in parafilm-wrapped plastic 0.01). This represents a mean reporting accuracy of 76.0 containers and stored at 20°C. 22.9% (range 43–158%). There were no significant differ- Body composition was calculated using total body water (TBW) ences in reporting accuracy among the age groups (P 0.05). and weight on d 0 and 14 using isotope dilution of D2O and H218O Energy expenditure (MJ/d) as determined by DLW was on d 0 and D2O on d 14. TBW was calculated using the enrichment significantly higher (P 0.01) in each stratified age range of saliva samples taken at 3 and 4 h postdose based on the assumption when compared to reported energy intake by MMDR (Fig. 1). that fat-free mass (FFM) is 73.2% hydrated. (Pace and Rathburn Women in the 50 –59 y age range reported 8.2 2.1 MJ/d 1945). Fat mass was calculated as the difference between body weight and FFM. (1954 491 kcal/d); however, TEE was 11.5 3.1 MJ/d The isotopic analysis was conducted using standard vacuum tech- (2759 751 kcal/d), representing a reporting accuracy of 74.4 niques as previously described by Jones et al. (1988). Urine and saliva 22.7%. In the 60 – 69 y age group, reported intake was 7.7 samples containing D2O were measured in duplicate or triplicate 1.3 MJ/d (1780 383 kcal/d) while TEE was determined to using a 903D dual-inlet isotope ratio mass spectrometer (IRMS), (VG be 10.6 3.0 MJ/d (2543 712 kcal/d), which calculated to Isogas, Cheshire, England). For H18O enrichment determination, 2 a reporting accuracy of 75.2 17.4%. In the 70 –79 y age 1.5-mL physiological samples of urine or saliva were added to Vacu- group, reported intake was 7.2 2.3 MJ/d (1724 554 tainer tubes. Urine samples were analyzed for C18O2 in three or four kcal/d) contrasting the TEE of 9.6 2.8 MJ/d (2287 677 replicates as required using a SIRA 12 IRMS (VG Isogas). Carbon kcal/d); reporting accuracy was 80.3 33.3%. There were dioxide production was calculated using the equation: TABLE 1 Anthropometric measures of the women studied1 Age, y Category 50–59 60–69 70–79 80–89 All n 18 17 12 6 53 Age, y 53 13 64 3 74 2 86 4 65 11 Wt, kg 68 15 62 9 58 11 57 7 63 12 Ht, cm 164 5 159 6 157 5 157 6 160 6 BMI,2 kg/m2 25.2 5 24.1 3 23.5 4 24.4 2 24.4 4 Body fat, kg/100 kg 33.8 11.3 21.2 9.7 28.5 8.7 27.2 9.9 27.8 11.1 1 Means SD. 2 Body mass index, BMI [wt(kg)/ht(m2)].
  3. 3. KACZKOWSKI ET AL. 804 eating for 4 d followed by overcompensation in energy intake for the next several days during the study period may have occurred. Subsequently, when the 4-d intake recording period ended, subjects may have returned to their normal eating patterns or even overcompensated for their temporary reduc- tion in food intake while recording. Due to the relatively short intake recording period, it is difficult to establish whether a reduction in food intake during the reporting period or under- reporting errors was the cause of the discrepancy between TEE and reported intake. In fact, both intake reduction and under- reporting may have been jointly responsible. Some subjects may have underreported in an attempt to conform to socially acceptable food habits while others actually did conform, eliminating certain foods from their diet over the study period. Other researchers have reported negative relationships be- tween reporting accuracy and TEE (Prentice et al. 1986, Ravussin et al. 1982, Schoeller 1988, Welle et al. 1992) which is possibly indicative of reluctance to report all food intake. Previous studies using self-reported food intakes compared FIGURE 1 Total energy expenditure (TEE) and energy intake as- to DLW show a consistent underestimation by participants sessed by multimedia diet records (MMDR) in women of various age and a wide variation in the energy intakes reported, depending groups. Bars indicate means SEM, n are given in Table 1. Uppercase letters depict significant differences (P 0.05) in TEE derived from on the method used (Bingham et al. 1995, Goran and Poehl- doubly-labeled water analyses among age groups while lowercase man 1992, Johnson et al. 1994, Martin et al. 1996, Schoeller letters describe differences in MMDR analyses among age groups. 1990). Rothenberg et al. (1998) compared diet histories in MMDR values were calculated from a 4-d dietary assessment method elderly Swedish subjects (n 12) to DLW and found that they using a tape recorder and camera. underestimated TEE by 12% (8.62 2.06 vs. 9.9 1.43 MJ/d (2060 492 vs. 2366 341 kcal/d). Energy intakes calculated from 7 d of consecutive weighed food records, 24-h significantly reduced reported intakes and TEE in the 80 y recalls and food frequency questionnaires were compared to age group compared to the younger age groups, 5.5 0.5 MJ/d DLW in middle-aged women (n 28) by Martin et al. (1996). (1313 118 kcal/d) and 7.6 1.7 MJ/d (1820 417 kcal/d), TEE was 9.0 2.1 MJ/d for subjects who were participating in respectively (P 0.05), although these differences were not a long-term dietary intervention study (48.5 5.0 y, 61.8 due to reporting accuracy (74.6 15.2%), but more likely to 6.7 kg). Reporting accuracy was 79.8 17.6% using 7-d reduced energy requirements. There were no differences in weighed food records. The degree of underreporting was not anthropometric measures across stratified age groups in body associated with BMI, anthropometric measures, percentage of mass index (BMI) (23.5–25.2 kg/m2) or body weight (57.7– energy from fat or carbohydrate or length of time of the dietary 68.0 kg), although body fat percentage was significantly lower trial. Reporting accuracy was similar in the present study at in the 60 – 69 y age group (21.2 9.7%) compared to the 76.0 22.9%; however, neither method using 4-d MMDR or group mean of (27.8 11.1%), (P 0.05). a conventional 7-d weighed record adequately estimated TEE. Johnson et al. (1994) examined correlates of reporting accu- racy in older women (n 56, 66 6 y, 64.1 7.6 kg) and DISCUSSION found underreporting of -2.2 1.8 MJ/d (526 430 kcal) TEE exceeded reported energy intakes for the subjects in compared to TEE. In this group of normal weight women, TEE the present study. This indicates that either the subjects were was 9.3 1.0 MJ/d as measured by DLW in a subsample (n underreporting their food intakes or decreased food consump- 13) of the study population. Percentage body fat was neg- tion during the 4 d MMDR recording period. Black (1996) atively correlated with underreporting of intake (r 0.42, P reviewed 574 TEE measurements and reported that in women 0.001). Pannemans and Westerterp (1993) examined a aged 40 – 64 y (52 8 y, 70 13.3 kg, BMI 26 4.6) mean group of elderly volunteers (n 12) using a 4-d food record TEE was 9.8 1.7 MJ/d with basal metabolic rate (BMR) and compared these reported intakes with expenditure deter- representing 5.8 0.7 MJ. This TEE calculation is very mined using DLW. They concluded that food records under- comparable to the mean energy expenditure of 10.4 3.1 estimate energy expenditure and are inversely correlated with MJ/d (2477 729 kcal/d) in the present study of older but BMI. Results from the present study did not provide a corre- slightly lighter women (64.9 11.3 y, 62.4 12.2 kg). lation with BMI nor body fat percentage (data not shown). Measures of energy intake assessment using factual methods The mean TEE in the present study closely approximated have innate problems due to their subjective nature. Factual TEE found by Starling et al. (1998) who measured TEE using methods depend on the assumption that the dietary data DLW (n 51, 67 6 y) and found TEE in women was 9.6 compiled are a valid and accurate assessment of intake and 2.7 MJ/d (2306 647 kcal/d). In a subgroup of 70 women that subjects are in energy balance while the dietary informa- and men, the strongest predictors of TEE were resting meta- tion is obtained (Jones et al. 1997). Even a novel method of bolic rate (RMR) and VO2 peak which explained 62% of the dietary intake recording used in this study resulted in subjects variance in TEE. RMR accounted for 63% of TEE 6.1 1.0 reporting only 76.0 22.9% of their energy intake. There are MJ/d (1463 244 kcal/d). Energy expenditure due to physical several possible reasons for this underestimation. Since mean activity was predicted most closely by (P 0.05) VO2 peak (r energy intake should equal mean intake in weight-stable sub- 0.43), FFM (r 0.39) and body weight (r 0.34). These jects, the reported energy intake infers underestimation of studies with similar mean energy expenditures offer validity to intake or undereating in this population. There was no mean the mean TEE in the present study. The comparable rates of weight change over the 13 d DLW period; however, under- underreporting found in these studies also lend credence to the
  4. 4. MULTIMEDIA DIET RECORDS UNDERESTIMATE ENERGY NEEDS 805 assumption that many subjects are either unwilling or unable Bingham, S. A. (1991) Limitations of the various methods for collecting dietary intake data. Ann. Nutr. Metab. 35: 117–127. to disclose all food intake. Bingham, S. A., Cassidy, A., Cole, T. J., Welch, A., Runswick, S. A., Black, A. E., MMDR were chosen because of the perceived reduction in Thurham, D., Bates, C., Khaw, K. T., Key, T. J. & Day, N. E. (1995) Vali- subject burden when recording meals with a tape recorder as dation of weighed records and other methods of dietary assessment using the 24 h urine nitrogen technique and other biological markers. Br. J. Nutr. 73: opposed to written records. The cross-referencing of tape- 531–550. recorded diaries with photographs taken at the time of con- Black, A. E. (1996) Physical activity levels from a meta-analysis of doubly- sumption was considered a method which could conceivably labeled water studies for validating energy intake as measured by dietary reduce the frequency rate of omissions. However, the meth- assessment. Nutr. Rev. 54: 170 –174. Dwyer, J. T. (1994) Dietary and nutritional assessment of the individual. In odology still relies on subject competence and willingness to Modern Nutrition in Health and Disease. 8th Edition. Edited by M.E. Shils, J.A. record daily food intake. Bingham (1991) has suggested that Olson, M. Shike. Lea & Febiger, Philadelphia, Penn. pp. 842– 860. 20% of subjects are either persistent underreporters or habitual Goran, M. I. & Poehlman, E. T. (1992) Total energy expenditure and energy dieters. She contends that whenever subjects are asked to keep requirements in healthy elderly persons. Metabolism 41: 744 –753. Johnson, R. K., Goran, M. I. & Poehlman, E. T. (1994) Correlates of over- and a record of intake it is plausible that they will change their under-reporting of energy intake in healthy older men and women. Am. J. Clin. typical dietary habits to increase simplification of reporting or Nutr. 59: 1286 –1290. because they become cognizant of how much they really are Jones, P.J ., Martin, L. J., Su, W., Boyd & N. F. (1997) Canadian recommended nutrient intakes underestimate true energy requirements in middle-aged consuming. The bias is typically toward underestimating in- women. Can. J. Public Health 88: 314 –319. take due to many reasons including memory loss, a desire to Jones, P. J., Winthrop, A. L., Schoeller, D. A., Filler, R. M., Swyer, P. R., Smith, J. conform to socially accepted food habits and simplification of & Heim, T. (1988) Evaluation of doubly labeled water for measuring energy reporting. Simplification of reporting may have been a factor expenditure during changing nutrition. Am. J. Clin. Nutr. 47: 799 – 804. Martin, L. J., Su, W., Jones, P. J., Lockwood, G. A., Tritchler, D. L. & Boyd, N. F. in this study because some subjects were not confident with (1996) Comparison of energy intakes determined by food records and the use of a tape recorder and camera. Error could have doubly labeled water in women participating in a dietary-intervention trial. occurred if there was an inclination to put off tape recording Am. J. Clin. Nutr. 63: 483– 490. until the end of the day or 4 d recording period instead of as Pace, N. & Rathburn, E. N. (1945) Studies on body composition III: The body water and chemically combined nitrogen content in relation to fat content. instructed, i.e., before every food item or beverage. Even J. Biol. Chem. 158: 685– 691. though subjects were trained otherwise, several women indi- Pannemans, D. L. & Westerterp, K. R. (1993) Estimation of energy intake to cated to the study coordinator at the end of the recording feed subjects at energy balance as verified with doubly labelled water: a study in the elderly. Eur. J. Clin. Nutr. 47: 490 – 496. period that they had made written records and then taped Prentice, A. M., Black, A. E., Coward, W. A., Davies, H. L., Gobberg, G. R., their intake at the end of the day or after the 4-d period while Murgatroyd, P. R., Ashford, P. R, Sawyer, M. & Whitehead, R. G. (1986) taking pictures as instructed, i.e., before food consumption. High levels of energy expenditure in obese women. Br. Med. J. 292: 983–987. In conclusion, it is likely that the discrepancy between TEE Ravussin, E., Burnand, B., Schutz, Y. & Jequier, E. (1982) Twenty-four-hour energy expenditure and resting metabolic rate in obese, moderately obese, and reported intake stemmed from a reduced intake in some and control subjects. Am. J. Clin. Nutr. 35: 566 –573. subjects while others intentionally or inadvertently did not Rothenberg, E., Bosaeus, I., Lernfelt, B., Landahl, S. & Steen, B. (1998) Energy disclose all foods consumed. The TEE measurements are sim- intake and expenditure-Validation of a diet history by heart rate monitoring, ilar to those reported in other studies, leading to the conclu- activity diary and doubly labeled water. Eur. J. Clin. Nutr. 52: 832– 838. Schoeller, D. A. (1988) Measurement of energy expenditure in free-living sion that this multimedia approach to dietary recording failed humans by using doubly labeled water. J. Nutr. 118: 1278 –1289. to measure true intake. Other methods of dietary assessment Schoeller, D. A. (1990) How accurate is self-reported dietary energy intake? should be encouraged to improve completeness of reporting Nutr. Rev. 48: 373–379. Schoeller, D. A., Ravussin, E., Schutz, Y., Acheson, K. J., Baertschi, P. & Jequier, food intake or to control for inherent errors in dietary intake E. (1986) Energy expenditure by doubly labeled water: Validation in hu- assessment. mans and proposed calculation. Am. J. Physiol. 250: R823–R830. Starling, R. D., Toth, M. J., Carpenter, W. H., Matthews, D. E. & Poehlman, E. T. (1998) Energy requirements and physical activity in free-living older women LITERATURE CITED and men: A doubly labeled water study. J. Appl. Physiol. 85: 1063–1069. Welle, S., Forbes, G. B., Statt, M., Barnard, R. R. & Amatruda, J.M. (1992) Beaton, G. H. (1994) Approaches to analysis of dietary data: Relationship Energy expenditure under free-living conditions in normal-weight and over- between planned analyses and choice of methodology. Am. J. Clin. Nutr. 59: 253S–261S. weight women. Am. J. Clin. Nutr. 55: 14 –21.