Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Electromagnetic waves 08

1,512 views

Published on

SACE Physics Section 3 Topic 1

Published in: Education, Technology
  • Be the first to comment

Electromagnetic waves 08

  1. 1. Electromagnetic Waves Section 3 Topic 1
  2. 2. Characteristics of e/m Waves <ul><li>Today it is commonplace to use radio signals ; </li></ul><ul><ul><li>travel through free space. </li></ul></ul>
  3. 3. Characteristics of e/m Waves <ul><li>Impulses from distant transmitters ; </li></ul><ul><ul><li>can be converted to sound and pictures in our lounge rooms , </li></ul></ul><ul><ul><li>or signals can be sent to and from satellites. </li></ul></ul><ul><li>These signals are examples of ; </li></ul><ul><ul><li>electromagnetic waves. </li></ul></ul>
  4. 4. Characteristics of e/m Waves <ul><li>Their existence was not contemplated until ; </li></ul><ul><ul><li>James Clerk Maxwell </li></ul></ul><ul><ul><li>a Scottish physicist </li></ul></ul><ul><ul><li>in 1864 </li></ul></ul><ul><ul><li>predicted mathematically, that these waves existed. </li></ul></ul>
  5. 5. Characteristics of e/m Waves <ul><li>It was not, until 24 years later ; </li></ul><ul><ul><li>they were produced and detected by , </li></ul></ul><ul><ul><li>Heinrich Hertz. </li></ul></ul>
  6. 6. Characteristics of e/m Waves <ul><li>The theoretical analysis of e / m waves was the birth ; </li></ul><ul><ul><li>of 20 th century physics. </li></ul></ul><ul><li>It was the contradiction between ; </li></ul><ul><ul><li>Maxwell’s laws of electromagnetism , </li></ul></ul><ul><ul><li>and Newton’s laws of mechanics . </li></ul></ul><ul><li>Led Einstein to his theory of relativity. </li></ul>
  7. 7. Characteristics of e/m Waves <ul><li>Maxwell investigated mathematically ; </li></ul><ul><ul><li>the fields around an accelerated charge. </li></ul></ul><ul><li>As there is a charge ; </li></ul><ul><ul><li>there is an electric field. </li></ul></ul><ul><li>If the charge is moving ; </li></ul><ul><ul><li>the charge must also produce , </li></ul></ul><ul><ul><li>a magnetic field. </li></ul></ul>
  8. 8. Characteristics of e/m Waves <ul><li>If the charge is accelerated ; </li></ul><ul><ul><li>the magnetic field must be changing , </li></ul></ul><ul><ul><li>the field depends on the velocity of the charge. </li></ul></ul>
  9. 9. Characteristics of e/m Waves <ul><li>If the charge that produces this field is oscillating back and forward ; </li></ul><ul><ul><li>it will generate a periodic wave , </li></ul></ul><ul><ul><li>similar to that produced in a slinky spring. </li></ul></ul>
  10. 10. Characteristics of e/m Waves <ul><li>This electromagnetic wave consists of ; </li></ul><ul><ul><li>a changing electric field that , </li></ul></ul><ul><ul><li>generates a changing magnetic field that , </li></ul></ul><ul><ul><li>regenerates the electric field , </li></ul></ul><ul><ul><li>and so on indefinitely. </li></ul></ul>
  11. 11. Characteristics of e/m Waves <ul><li>The wave travels by transferring ; </li></ul><ul><ul><li>energy from the electric field , </li></ul></ul><ul><ul><li>to the magnetic field , </li></ul></ul><ul><ul><li>and back again. </li></ul></ul>
  12. 12. Characteristics of e/m Waves <ul><li>In the slinky , the wave travels by transferring energy from ; </li></ul><ul><ul><li>the potential energy of the deformation of the spring to , </li></ul></ul><ul><ul><li>the kinetic energy of the spring , </li></ul></ul><ul><ul><li>and back again. </li></ul></ul>
  13. 13. Characteristics of e/m Waves <ul><li>Once produced, the wave continues to travel away from its source ; </li></ul><ul><ul><li>even if the oscillating charge , </li></ul></ul><ul><ul><li>no longer exists. </li></ul></ul>
  14. 14. Characteristics of e/m Waves <ul><li>The electromagnetic wave travels ; </li></ul><ul><ul><li>in the same manner as a slinky wave , </li></ul></ul><ul><ul><li>By a transverse wave. </li></ul></ul>
  15. 15. Characteristics of e/m Waves <ul><li>The fields oscillate at right angles ; </li></ul><ul><ul><li>to each other in the one plane , </li></ul></ul><ul><ul><li>while the wave moves perpendicularly , </li></ul></ul><ul><ul><li>to both fields. </li></ul></ul>
  16. 16. Characteristics of e/m Waves <ul><li>Remember </li></ul><ul><li>e / m waves are always of fields ; </li></ul><ul><ul><li>not of matter. </li></ul></ul>
  17. 17. Characteristics of e/m Waves E/M Wave Animation E/M Wave Animation 2
  18. 18. Characteristics of e/m Waves <ul><li>The experimental evidence for Maxwell’s concept of e /m waves ; </li></ul><ul><ul><li>received experimental confirmation when , </li></ul></ul><ul><ul><li>Heinrich Hertz generated , </li></ul></ul><ul><ul><li>and detected waves . </li></ul></ul><ul><ul><li>electrically in 1886. </li></ul></ul>
  19. 19. Characteristics of e/m Waves <ul><li>He made two loops of wire ; </li></ul><ul><ul><li>identical in size and shape , </li></ul></ul><ul><ul><li>open at the ends , </li></ul></ul><ul><ul><li>with brass knobs , </li></ul></ul><ul><ul><li>attached as shown below. </li></ul></ul>
  20. 20. Characteristics of e/m Waves
  21. 21. Characteristics of e/m Waves <ul><li>One loop was connected to a very high potential ; </li></ul><ul><ul><li>when the switch was closed, </li></ul></ul><ul><ul><li>a spark jumped , </li></ul></ul><ul><ul><li>between the brass knobs. </li></ul></ul>
  22. 22. Characteristics of e/m Waves <ul><li>The spark consists of a series ; </li></ul><ul><ul><li>of high frequency surges , </li></ul></ul><ul><ul><li>of electric charge. </li></ul></ul><ul><li>The frequency is a characteristic ; </li></ul><ul><ul><li>of the properties of the loop itself. </li></ul></ul>
  23. 23. Characteristics of e/m Waves <ul><li>The loop operated at about 100 megacycles (MHz) ; </li></ul><ul><ul><li>middle of the T.V. frequencies , </li></ul></ul><ul><ul><ul><li>we use now. </li></ul></ul></ul><ul><li>The continuously changing current ; </li></ul><ul><ul><li>generated an electromagnetic wave. </li></ul></ul>
  24. 24. Characteristics of e/m Waves <ul><li>The second loop was placed ; </li></ul><ul><ul><li>at the other end of the room. </li></ul></ul><ul><li>As it had the same dimensions as the first ; </li></ul><ul><ul><li>it had the same natural frequency of oscillation. </li></ul></ul>
  25. 25. Characteristics of e/m Waves <ul><li>The result was that the second loop ; </li></ul><ul><ul><li>was in resonance with the first, and the e /m wave, </li></ul></ul><ul><ul><li>even though weak, </li></ul></ul><ul><ul><li>could set up a considerable electric oscillation , </li></ul></ul><ul><ul><li>in the second loop. </li></ul></ul>
  26. 26. Characteristics of e/m Waves <ul><li>This effect found by Hertz ; </li></ul><ul><ul><li>allows us to generate , </li></ul></ul><ul><ul><li>and amplify high, </li></ul></ul><ul><ul><li>single frequency a . c. </li></ul></ul><ul><li>The frequency is measured ; </li></ul><ul><ul><li>from hundreds to billions of cycles per second. </li></ul></ul>
  27. 27. Characteristics of e/m Waves <ul><li>This is produced in a radio transmitter ; </li></ul><ul><ul><li>amplified through various circuits , </li></ul></ul><ul><ul><li>sent to an antenna. </li></ul></ul><ul><li>It can be interrupted ; </li></ul><ul><ul><li>or varied in amplitude , </li></ul></ul><ul><ul><li>or frequency , </li></ul></ul><ul><ul><li>to put information onto the signal. </li></ul></ul>
  28. 28. Characteristics of e/m Waves <ul><li>This can be converted by the circuits of the receiver ; </li></ul><ul><ul><li>into sound or pictures. </li></ul></ul>
  29. 29. Characteristics of e/m Waves <ul><li>In a transmitter ; </li></ul><ul><ul><li>the a . c . current is carried , </li></ul></ul><ul><ul><li>along two wires to the antenna. </li></ul></ul><ul><li>This is shown in the diagram below. </li></ul>
  30. 30. Characteristics of e/m Waves
  31. 31. Characteristics of e/m Waves <ul><li>Dark areas represent concentrations ; </li></ul><ul><ul><li>of positive charges </li></ul></ul><ul><li>Light areas ; </li></ul><ul><ul><li>negative charges. </li></ul></ul><ul><li>The arrows are ; </li></ul><ul><ul><li>representation of the electric field. </li></ul></ul>
  32. 32. Characteristics of e/m Waves <ul><li>The sine wave above represents ; </li></ul><ul><ul><li>the potential between the two wires. </li></ul></ul><ul><li>The pattern moves to the right ; </li></ul><ul><ul><li>towards the antenna , </li></ul></ul><ul><ul><li>as shown on the right. </li></ul></ul>
  33. 33. Characteristics of e/m Waves <ul><li>The current changes along the wire ; </li></ul><ul><ul><li>moving from +ive to -ive. </li></ul></ul><ul><li>The change in current is shown below. </li></ul>
  34. 34. Characteristics of e/m Waves
  35. 35. Characteristics of e/m Waves <ul><li>The waves in the transmission line ; </li></ul><ul><ul><li>create very little field outside the line , </li></ul></ul><ul><ul><li>as field in one wire cancels the other. </li></ul></ul><ul><li>An electromagnetic wave can be created ; </li></ul><ul><ul><li>by terminating the line in an antenna. </li></ul></ul>
  36. 36. Characteristics of e/m Waves <ul><li>In its simplest form ; </li></ul><ul><ul><li>it is just a wire bent , </li></ul></ul><ul><ul><li>at right angles , </li></ul></ul><ul><ul><li>to the transmission line. </li></ul></ul>
  37. 37. Characteristics of e/m Waves <ul><li>When the current wave reaches the end ; </li></ul><ul><ul><li>it cannot go any further , </li></ul></ul><ul><ul><li>it must be reflected back. </li></ul></ul><ul><li>If the length of the antenna is  /2 ; </li></ul><ul><ul><li>standing wave can be formed. </li></ul></ul>
  38. 38. Characteristics of e/m Waves <ul><li>It is a standing wave of current ; </li></ul><ul><ul><li>and potential , </li></ul></ul><ul><ul><li>that is radiated out into space , </li></ul></ul><ul><ul><li>as an electromagnetic wave. </li></ul></ul><ul><ul><li>Dipole Antenna </li></ul></ul>
  39. 39. Characteristics of e/m Waves <ul><li>If another antenna is placed parallel to the first ; </li></ul><ul><ul><li>the magnetic field continually change s, </li></ul></ul><ul><ul><li>as the current in the transmitting antenna changes. </li></ul></ul>
  40. 40. Characteristics of e/m Waves <ul><li>As the electric field reaches the receiving antenna ; </li></ul><ul><ul><li>it exerts a force on the charges , </li></ul></ul><ul><ul><li>which causes them to vibrate. </li></ul></ul>
  41. 41. Characteristics of e/m Waves <ul><li>The wave then regenerates in the receiving antenna. </li></ul><ul><li>This means the electrons in the receiving antenna ; </li></ul><ul><ul><li>vibrate in the same manner , </li></ul></ul><ul><ul><li>as the transmitting antenna. </li></ul></ul>
  42. 42. Characteristics of e/m Waves <ul><li>There are many types of antennas. </li></ul><ul><li>The wavelength of an AM radio station is about ; </li></ul><ul><ul><li>200 to 300 metres. </li></ul></ul>
  43. 43. Characteristics of e/m Waves <ul><li>A half wave antenna would have to be between ; </li></ul><ul><ul><li>100 to 150 metres high. </li></ul></ul><ul><li>These stations only use the top half of 75 m ; </li></ul><ul><ul><li>making it a quarter wave antenna. </li></ul></ul>
  44. 44. Characteristics of e/m Waves <ul><li>Each vibrating electron ; </li></ul><ul><ul><li>emits an electromagnetic wave , </li></ul></ul><ul><ul><li>in one plane. </li></ul></ul><ul><li>The electric field ; </li></ul><ul><ul><li>produced by a radio antenna , </li></ul></ul><ul><ul><li>is in one direction. </li></ul></ul>
  45. 45. Characteristics of e/m Waves <ul><li>If the antenna is vertical ; </li></ul><ul><ul><li>the electric field is vertical. </li></ul></ul><ul><li>A wave that is orientated in a unique direction ; </li></ul><ul><ul><li>is polarised. </li></ul></ul>
  46. 46. Characteristics of e/m Waves <ul><li>This means the receiving antenna ; </li></ul><ul><ul><li>must be orientated in the same plane , </li></ul></ul><ul><ul><li>as the transmitting antenna. </li></ul></ul><ul><li>For radio waves ; </li></ul><ul><ul><li>this is also vertical. </li></ul></ul>
  47. 47. Characteristics of e/m Waves <ul><li>If two transmitting antenna are broadcasting on the same frequency ; </li></ul><ul><ul><li>a receiving antenna , </li></ul></ul><ul><ul><li>orientated to the transmitting antenna , </li></ul></ul><ul><ul><li>will receive both signals. </li></ul></ul>
  48. 48. Characteristics of e/m Waves <ul><li>To avoid this ; </li></ul><ul><ul><li>one transmitting antenna can change , </li></ul></ul><ul><ul><li>the polarisation of its signal. </li></ul></ul><ul><li>This means that the receiving antenna ; </li></ul><ul><ul><li>will only be able to pick up the signal , </li></ul></ul><ul><ul><li>that it is orientated towards. </li></ul></ul>
  49. 49. Characteristics of e/m Waves <ul><li>This is done with city and country television channels. </li></ul>
  50. 50. Characteristics of e/m Waves <ul><li>All electromagnetic waves travel at the speed of light. </li></ul><ul><li>From previous work ; </li></ul><ul><ul><li>the speed of a wave can be related to its frequency and wavelength by: </li></ul></ul><ul><li>v = f  </li></ul>
  51. 51. Characteristics of e/m Waves <ul><li>For electromagnetic waves travelling at the speed of light ( c ), </li></ul><ul><ul><li>this can be modified to: </li></ul></ul><ul><li>c = f  </li></ul>
  52. 52. Application - LADS <ul><li>Laser Airborne Depth System </li></ul><ul><li>Used to chart large areas of coastlines. </li></ul><ul><li>Much of Australia’s coastline is not accurately charted which means ; </li></ul><ul><ul><li>shipping hazards can go undetected. </li></ul></ul>
  53. 53. Application - LADS <ul><li>Originally, a weighted line was dropped overboard ; </li></ul><ul><ul><li>readings were taken to , </li></ul></ul><ul><ul><li>determine the depth of the water. </li></ul></ul><ul><li>This was slow and laborious. </li></ul>
  54. 54. Application - LADS <ul><li>Later, depth sounders ; </li></ul><ul><ul><li>using sound waves , were used but , </li></ul></ul><ul><ul><li>the speed at which an area could be mapped was limited ; </li></ul></ul><ul><ul><li>to the speed of the boat. </li></ul></ul>
  55. 55. Application - LADS <ul><li>The most recent development is ; </li></ul><ul><ul><li>to use airborne laser light. </li></ul></ul><ul><li>This system ; </li></ul><ul><ul><li>developed in South Australia , </li></ul></ul><ul><ul><li>makes us the leader in this field , </li></ul></ul><ul><ul><li>interest in this technology is developing , </li></ul></ul><ul><ul><li>worldwide. </li></ul></ul>
  56. 56. Application - LADS <ul><li>The principle used to determine the depth of water is the same ; </li></ul><ul><ul><li>for conventional depth sounders. </li></ul></ul>
  57. 57. Application - LADS <ul><li>The time taken for a pulse of laser light ; </li></ul><ul><ul><li>to complete a round trip from the surface of the water, </li></ul></ul><ul><ul><li>to the bottom and back again. </li></ul></ul>
  58. 58. Application - LADS <ul><li>Knowing the speed at which the wave travels ; </li></ul><ul><ul><li>measuring the time taken, </li></ul></ul><ul><ul><li>allows us to calculate the distance travelled. </li></ul></ul>
  59. 59. Application - LADS <ul><li>The complication with this method is ; </li></ul><ul><ul><li>that the transmitter and receiver , </li></ul></ul><ul><ul><li>is not at the surface of the water but , </li></ul></ul><ul><ul><li>some distance above it. </li></ul></ul>
  60. 60. Application - LADS <ul><li>The time taken for the light to travel through the air ; </li></ul><ul><ul><li>must be subtracted. </li></ul></ul>
  61. 61. Application - LADS <ul><li>Example: </li></ul><ul><li>Light travel ling vertically from the aircraft to the surface of water . </li></ul><ul><li>Method of determining the time taken for the light ; </li></ul><ul><ul><li>to travel in air , </li></ul></ul><ul><ul><li>can be calculated. </li></ul></ul>
  62. 62. Application - LADS <ul><li>When a wave hits an interface ; </li></ul><ul><ul><li>part of the wave is reflected , </li></ul></ul><ul><ul><li>part of the wave is transmitted. </li></ul></ul>
  63. 63. Application - LADS <ul><li>The laser pulse will reflect from the top of the water ; </li></ul><ul><ul><li>and off the bottom , </li></ul></ul><ul><ul><li>detector in the plane will receive two return pulses. </li></ul></ul>
  64. 64. Application - LADS <ul><li>Call the time of travel from ; </li></ul><ul><ul><li>the aircraft to the surface of the water , </li></ul></ul><ul><ul><ul><li>and back again , </li></ul></ul></ul><ul><ul><li>t s , </li></ul></ul><ul><ul><li>total travel time for the pulse , </li></ul></ul><ul><ul><ul><li>reflected from the bottom , </li></ul></ul></ul><ul><ul><li>t b . </li></ul></ul>
  65. 65. Application - LADS <ul><li>Time taken for the pulse to travel ; </li></ul><ul><ul><li>in the water in one direction , </li></ul></ul><ul><ul><li>t w . </li></ul></ul><ul><li>The total time in the water will be ; </li></ul><ul><ul><li>2 t w </li></ul></ul><ul><li>The total time will be: </li></ul><ul><ul><li>t b = t s + 2t w </li></ul></ul>
  66. 66. Application - LADS <ul><li>To determine the time taken in water ; </li></ul><ul><ul><li>t w = (t b - t s )/2 </li></ul></ul><ul><li>The water depth can then be determined: </li></ul><ul><ul><li>depth = speed of pulse in water x t w </li></ul></ul>
  67. 67. Application - LADS <ul><li>To increase the amount of area the LADS system can cover at one time ; </li></ul><ul><ul><li>laser pulse scans across the path of the aircraft , </li></ul></ul><ul><ul><li>in the green region of the spectrum. </li></ul></ul>
  68. 68. Application - LADS <ul><li>This means the calculation is more complicated because ; </li></ul><ul><ul><li>of the geometry of the path taken. </li></ul></ul><ul><li>The principle,remains the same. </li></ul>
  69. 69. Application - LADS <ul><li>If the water was flat ; </li></ul><ul><ul><li>pulse scanned at an angle other than vertically, </li></ul></ul><ul><ul><li>beam would never return to the aircraft. </li></ul></ul>
  70. 70. Application - LADS <ul><li>In normal conditions, </li></ul><ul><ul><li>there is some light that is reflected back. </li></ul></ul><ul><li>To overcome these problems, </li></ul><ul><ul><li>a second pulse is directed vertically downward , </li></ul></ul><ul><ul><li>from the aircraft , </li></ul></ul><ul><ul><li>in the infrared region. </li></ul></ul>
  71. 71. Application - LADS <ul><li>This can determine the height of the aircraft ; </li></ul><ul><ul><li>knowing the angle at which the pulse is sent, </li></ul></ul><ul><ul><li>the distance travelled and hence , </li></ul></ul><ul><ul><li>the travel time can be calculated. </li></ul></ul><ul><li>Having two beams also allows for ; </li></ul><ul><ul><li>corrections for wave height. </li></ul></ul>
  72. 72. Application - LADS <ul><li>It is also important for the aircraft to know its exact position. </li></ul><ul><li>This allows for an accurate map to be made. </li></ul><ul><li>This is done using GPS ; </li></ul><ul><ul><li>Global Positioning System. </li></ul></ul>
  73. 73. Application - LADS <ul><li>The laser itself is very powerful ; </li></ul><ul><ul><li>(1 MW). </li></ul></ul><ul><li>This compares to the school laser ; </li></ul><ul><ul><li>0.95 mW. </li></ul></ul><ul><li>The reasons the laser is so powerful include: </li></ul>
  74. 74. Application - LADS <ul><li>   As the pulse is not vertical ; </li></ul><ul><ul><li>it s system needs to ensure there is enough light returned to the plane , </li></ul></ul><ul><ul><li>so that calculations can be made. </li></ul></ul>
  75. 75. Application - LADS <ul><li>    The nature of the bottom reflects different amounts of light. </li></ul><ul><li>Sandy bottoms reflect the most ; </li></ul><ul><ul><li>rocky bottoms or vegetation , </li></ul></ul><ul><ul><li>can absorb a great deal of light. </li></ul></ul>
  76. 76. Application - LADS <ul><li>     Suspended particles in the water ; </li></ul><ul><ul><li>scatter light. </li></ul></ul><ul><li>This reduces the amount of light ; </li></ul><ul><ul><li>returned to the aircraft. </li></ul></ul>
  77. 77. Application - LADS <ul><li> The light at the surface of the water ; </li></ul><ul><ul><li>must be eye safe. </li></ul></ul><ul><li>This allows the plane to scan over boats ; </li></ul><ul><ul><li>without causing damage to anyone on board. </li></ul></ul>
  78. 78. Application - LADS <ul><li>To do this the beam is passed through a series of lenses ; </li></ul><ul><ul><li>so that the beam diverges. </li></ul></ul><ul><li>At 500 m ; </li></ul><ul><ul><li>the beam diverges 3m. </li></ul></ul>
  79. 79. Application - LADS <ul><li>Green laser light is used ; </li></ul><ul><ul><li>for the beam transmitted to the bottom of the ocean because , </li></ul></ul><ul><ul><li>the absorption in coastal waters is least at these frequencies . </li></ul></ul>

×