Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Electric Fields


Published on

SACE Physics Section 2 Topic 1

Published in: Education, Technology, Business
  • Is it possible to download this presentation?
    Are you sure you want to  Yes  No
    Your message goes here

Electric Fields

  1. 1. Electric Fields Section 2 Topic 1
  2. 2. Charges <ul><li>All matter is made up of atoms and molecules ; </li></ul><ul><ul><li>contain charged particles, </li></ul></ul><ul><ul><li>the proton and electron. </li></ul></ul><ul><li>The charges on each are equal ; </li></ul><ul><ul><li>but opposite in sign. </li></ul></ul>
  3. 3. Charges <ul><li>The quantity of charge is measured in coulombs (C). </li></ul><ul><li>1C = charge carried by 6.25 x 10 18 electrons </li></ul><ul><li>The charge on one electron = -1.6 x 10 -19 C </li></ul><ul><li>The charge on one proton = +1.6 x 10 -19 C </li></ul>
  4. 4. Charges <ul><li>Uncharged matter is electrically neutral ; </li></ul><ul><ul><li>same number of electrons and protons. </li></ul></ul><ul><li>By displacing electrons ; </li></ul><ul><ul><li>object can become charged. </li></ul></ul>
  5. 5. Charges <ul><li>Like charges repel; unlike charges attract. </li></ul><ul><li>In most cases ; </li></ul><ul><ul><li>it is the electrons that move , </li></ul></ul><ul><ul><li>electrons are free to move . </li></ul></ul><ul><ul><li>positive can move in some cases . </li></ul></ul>
  6. 6. Coulomb’s Law <ul><li>Charles Augustin de Coulomb ; </li></ul><ul><ul><li>in 1785 , </li></ul></ul><ul><li>I nvestigated the force acting ; </li></ul><ul><ul><li>between any two charged objects. </li></ul></ul><ul><li>He discovered that there was a relationship between ; </li></ul><ul><ul><li>force ( F ) , </li></ul></ul><ul><ul><li>two charges on the objects q 1 and q 2 . </li></ul></ul>
  7. 7. Coulomb’s Law <ul><li>F  q 1 and F  q 2 </li></ul><ul><li>  D iscovered a relationship between ; </li></ul><ul><ul><li>force ( F ) , </li></ul></ul><ul><ul><li>distance ( r ) between the centres of the objects. </li></ul></ul>
  8. 8. Coulomb’s Law <ul><li>The value of the constant is ; </li></ul><ul><ul><li>9.00 x 10 9 Nm 2 C -2 , in a vacuum. </li></ul></ul><ul><li>The constant is written as : </li></ul><ul><li> = permittivity of a medium ; </li></ul><ul><ul><li>or the ability to transmit electric force. </li></ul></ul><ul><li> o is the permittivity in a vacuum. </li></ul>
  9. 9. Coulomb’s Law <ul><li>Force is a vector and so must have a direction. </li></ul><ul><li>The force is along a line joining the two centres. </li></ul><ul><li>If charges are the same, </li></ul><ul><ul><li>there is repulsion </li></ul></ul><ul><li>I f different, </li></ul><ul><ul><li>there is attraction. </li></ul></ul><ul><li>Coulomb’s Law states: </li></ul>
  10. 10. Coulomb’s Law <ul><li>T he force acting between two charges q 1 and q 2 ; </li></ul><ul><ul><li>who are separated by a distance d , </li></ul></ul><ul><ul><li>is directly proportional to the product of the charges , </li></ul></ul><ul><ul><li>and inversely proportional to the square of the distance between them. </li></ul></ul><ul><li>The force is along the line joining the centres of the charges. </li></ul>
  11. 11. Coulomb’s Law <ul><li>This is similar to Newton’s law of universal gravitation: </li></ul>
  12. 12. Coulomb’s Law <ul><li>1. The interaction acts on both bodies. </li></ul><ul><li>2. Both forces act at a distance without the bodies touching. </li></ul><ul><li>3. Both directly proportional to the product of the properties causing the interaction. </li></ul><ul><li>4. Both inversely proportional to the distance between the bodies. </li></ul><ul><li>5. Forces are consistent with N III </li></ul>
  13. 13. Coulomb’s Law <ul><li>They are dissimilar in that: </li></ul><ul><li>1. Gravitation is a force of attraction only while charges can attract and repel. </li></ul><ul><li>2. The force between charges depends on the medium while gravity does not. </li></ul>
  14. 14. Principle of Superposition <ul><li>As force is a vector we cannot algebraically add forces if there is more than one point charge present. </li></ul><ul><li>The law that we use to determine to total force is called the law of superposition. </li></ul>
  15. 15. Principle of Superposition <ul><li>When two or more point charges are present ; </li></ul><ul><ul><li>the total force is equal to , </li></ul></ul><ul><ul><li>the vector sum of the forces , </li></ul></ul><ul><ul><li>due to each of the other point charges. </li></ul></ul>
  16. 16. Principle of Superposition <ul><li>To use this principle, follow the rules given below: </li></ul><ul><li>1. Draw a labelled diagram </li></ul><ul><li>Use coulombs law to determine the magnitude ; </li></ul><ul><ul><li>ignore the direction at this stage </li></ul></ul>
  17. 17. Principle of Superposition <ul><li>3. Determine if the force is attractive or repulsive . </li></ul><ul><li>4. Repeat step 2 for any other combinations of charges . </li></ul><ul><li>5. Draw a vector diagram . </li></ul>
  18. 18. Principle of Superposition <ul><li>Find the resultant ; </li></ul><ul><ul><li>using Pythagoras theorem , </li></ul></ul><ul><ul><li>trigonometry </li></ul></ul><ul><li>Determine the direction using trigonometry. </li></ul><ul><li>Coulomb's Law </li></ul><ul><li>Coulombs Law 2 </li></ul>
  19. 19. Principle of Superposition Try Example 1
  20. 20. Solution
  21. 21. Solution <ul><li>q = +10  C = +10 x 10 -6 = 10 5 C </li></ul><ul><li>q 1 = +6  C = +6 x 10 -6 C </li></ul><ul><li>d 1 = 0.6 m </li></ul><ul><li>q 2 = +8  C = +8 x 10 -6 C </li></ul><ul><li>d 2 = 0.4 m </li></ul><ul><li>F total = F 1 + F 2 </li></ul>
  22. 22. Solution <ul><li>Must use vector techniques as forces are in different directions. </li></ul><ul><li>F 1 = 1.50 N east (repulsion) </li></ul>
  23. 23. Solution <ul><li>F 2 = 4.5 N south (attraction) </li></ul>
  24. 24. Solution
  25. 25. Solution <ul><li>Use Pythagoras’ Theorem; </li></ul><ul><li>F total = 4.74 N </li></ul>
  26. 26. Solution <ul><li>From trigonometry, </li></ul><ul><li> = 71.6 o </li></ul>
  27. 27. Solution <ul><li>The angle is 71.6 + 90 = 161.6 o T </li></ul><ul><li>F total = 4.74 N at 161.6 o T </li></ul>
  28. 28. The Electric Field <ul><li>An electric field is a region in space where ; </li></ul><ul><ul><li>an object will experience a force due to , </li></ul></ul><ul><ul><li>its charge , </li></ul></ul><ul><ul><li>without the charges necessarily touching. </li></ul></ul>
  29. 29. Lines of Electric Force <ul><li>A diagram representing the relative strength of a field at any point can be drawn. </li></ul><ul><li>The lines drawn give , </li></ul><ul><ul><li>direction of the force on a tiny positive charge . </li></ul></ul><ul><li>If the charge were allowed to move, </li></ul><ul><ul><li>the charge would move along the field line. </li></ul></ul>
  30. 30. Lines of Electric Force <ul><li>  Rules for drawing electric field line diagrams. </li></ul><ul><li>1. Lines of electric force are always directed from positive to negative charges. </li></ul>
  31. 31. Lines of Electric Force
  32. 32. Lines of Electric Force <ul><li>Lines of electric force always start and end on a charged surface ; </li></ul><ul><ul><li>make an angle of 90 o to that surface. </li></ul></ul><ul><li>If the surface is curved ; </li></ul><ul><ul><li>construct a line at 90 o to the tangent at that point. </li></ul></ul>
  33. 33. Lines of Electric Force
  34. 34. Lines of Electric Force
  35. 35. Lines of Electric Force <ul><li>3. Lines of electric force never cross. </li></ul><ul><li>There is no electric field inside a hollow conductor, </li></ul><ul><ul><li>hence no lines of electric force exist. </li></ul></ul><ul><li>This is used in electrical shielding such as ; </li></ul><ul><ul><li>Faraday’s Box , </li></ul></ul><ul><ul><li>Van De Graaf. </li></ul></ul><ul><li>Electric Field Charge Configuration </li></ul>
  36. 36. Lines of Electric Force <ul><li>Lines of electric force are found to concentrate ; </li></ul><ul><ul><li>at regions of high curvature on a conductor. </li></ul></ul>
  37. 37. Lines of Electric Force <ul><li>The field may be strong enough </li></ul><ul><ul><li>at the sharp point </li></ul></ul><ul><ul><li>to ionise the air. </li></ul></ul><ul><li>Charges may then move away </li></ul><ul><ul><li>from the conductor. </li></ul></ul><ul><li>This is called Corona Discharge. </li></ul><ul><li>Will be discussed in more detail later. </li></ul>
  38. 38. Lines of Electric Force <ul><li>Make sure that the number of field lines per unit area represents the field strength ; </li></ul><ul><ul><li>when close together the field is strong , </li></ul></ul><ul><ul><li>when far apart the field is weak. </li></ul></ul><ul><li>  Where the field lines are parallel and equally spaced ; </li></ul><ul><ul><li>the field is said to be uniform. </li></ul></ul>
  39. 39. Lines of Electric Force
  40. 40. Lines of Electric Force <ul><li>The field becomes curved ; </li></ul><ul><ul><li>or non uniform. </li></ul></ul><ul><li>This is known as the end effect. </li></ul><ul><li>If the separation of the plates becomes too large ; </li></ul><ul><ul><li>the end effect encroaches on the region between the plates. </li></ul></ul>
  41. 41. Lines of Electric Force <ul><li>This is the reason why the plates should be much longer ; </li></ul><ul><ul><li>than the separation between them. </li></ul></ul>
  42. 42. Lines of Electric Force
  43. 43. Lines of Electric Force <ul><li>U ncharged sphere placed between parallel plates </li></ul>Electric Field around 2 Point Charges
  44. 44. Electric Field Strength <ul><li>The above diagrams only give an idea of the actual field strength. </li></ul><ul><li>In gravitational fields, field strength was determined by: </li></ul><ul><li>In an electric field ; </li></ul><ul><ul><li>the result is very similar. </li></ul></ul>
  45. 45. Electric Field Strength <ul><li>The electric field strength, E , </li></ul><ul><ul><li>at a point in an electric field is given by the force, F , </li></ul></ul><ul><ul><li>acting on a unit positive charge placed at that point in the field. </li></ul></ul><ul><li>Units for E are N C -1 . </li></ul><ul><li>It is a vector with both magnitude and direction. </li></ul>
  46. 46. Try Example 2
  47. 47. Solution (Part a) <ul><li>q = + 2.50 x 10 -5 C </li></ul><ul><li>F = 1.25 N west </li></ul><ul><li>E = 5.00 x 10 4 N C -1 west </li></ul>
  48. 48. Solution (Part b) <ul><li>M = 1.00 x 10 -2 kg </li></ul><ul><li>F = m a </li></ul><ul><li>a = 125 m s -2 West </li></ul>
  49. 49. Derivation <ul><li>Consider two charges ; </li></ul><ul><ul><li>a fixed point charge q and a test charge q T , </li></ul></ul><ul><ul><li>separated by a vacuum by a distance r. </li></ul></ul><ul><li>Coulomb’s law gives the force each feels ; </li></ul><ul><ul><li>directions will be opposite (NIII). </li></ul></ul>
  50. 50. Derivation <ul><li>E at the position of q T is given by : </li></ul>
  51. 51. Derivation
  52. 52. Derivation <ul><li>This expression does not include the test charge. </li></ul><ul><li>The strength of the electric field at a point ; </li></ul><ul><ul><li>is a feature of the field and , </li></ul></ul><ul><ul><li>is independent of any charge placed at that point . </li></ul></ul>
  53. 53. Derivation <ul><li>This is analogous to gravitational field strength. </li></ul><ul><li>The field strength at the surface of the earth is 9.8 ms -2 ; </li></ul><ul><ul><li>regardless of whether a mass is present or not. </li></ul></ul>
  54. 54. Try Example 3
  55. 55. Solution (Part a) <ul><li>q = - 6.0 x 10 -6 C </li></ul><ul><li>r = 1.0 x 10 -2 m </li></ul><ul><li>E = 6 x 10 -7 N C -1 towards charge </li></ul><ul><li>E = 5.4 x 10 8 N C -1 toward the centre of the sphere </li></ul>
  56. 56. Solution (Part b) <ul><li>r = 0.03 m </li></ul><ul><li>r = 0.03 m from the centre of the sphere or 0.02 m above its surface. </li></ul>
  57. 57. Solution (Part c) <ul><li>At a point 0.03 m from the centre of the charge, </li></ul><ul><li>F = E q </li></ul><ul><li>F = 6 x 10 7 x 1.0 x 10 -6 </li></ul><ul><li>F = 60 N toward the centre of the sphere (attraction) </li></ul>
  58. 58. Electric Field Strength Due to Several Charges <ul><li>As the electric field strength is also a vector ; </li></ul><ul><ul><li>the law of superposition also applies. </li></ul></ul>
  59. 59. Electric Field Strength Due to Several Charges <ul><li>If more than one charge exists in an electric field, the total field at any one point is ; </li></ul><ul><ul><li>the vector sum of the electric field strengths due to each charge. </li></ul></ul><ul><li>E total = E 1 + E 2 + E 3 + …….+ E n </li></ul>
  60. 60. Electric Field Strength Due to Several Charges Example
  61. 61. Electric Field Strength Due to Several Charges <ul><li>There are three component fields at point P and so to find the resultant field ; </li></ul><ul><ul><li>a vector addition must be completed. </li></ul></ul><ul><li>Note the direction of the component fields is away from the positive charges. </li></ul>
  62. 62. Electric Field Strength Due to Several Charges
  63. 63. Electric Field Strength Due to Several Charges <ul><li>For two opposite charges ; </li></ul><ul><ul><li>the direction must also be taken into account. </li></ul></ul><ul><li>For negative charges ; </li></ul><ul><ul><li>the direction is towards the negative charge. </li></ul></ul>
  64. 64. Electric Field Strength Due to Several Charges
  65. 65. Try Example 4
  66. 66. Solution Part (a) <ul><li>q 1 = + 5.0 x 10 -6 C r 1 = 0.05 m </li></ul><ul><li>q 2 = - 5.0 x 10 -6 C r 2 = 0.05 m </li></ul><ul><li>E 1 = 1.8 x 10 7 N C -1 toward q 2 </li></ul>
  67. 67. Solution Part (a) <ul><li>E 2 = 1.8 x 10 7 N C -1 toward q 2 </li></ul><ul><li>As both are vectors in the same direction, their magnitudes can be added arithmetically. </li></ul><ul><li>E T = E 1 + E 2 </li></ul><ul><li>E T = 3.6 x 10 7 N C -1 toward the negative charge </li></ul>
  68. 68. Solution Part (b) <ul><li>The three sides are 6, 8, 10. It must therefore be right angled as it is the Pythagorean ratio 3:4:5 </li></ul><ul><li>E T = E 1 +E 2 </li></ul>
  69. 69. Solution Part (b) <ul><li>E 1 = 1.25 x 10 7 N C -1 away from q 1 </li></ul>
  70. 70. Solution Part (b) <ul><li>E 2 = 7.03 x 10 6 N C -1 toward q 2 </li></ul>
  71. 71. Solution Part (b) <ul><li>Use Pythagoras’ Theorem </li></ul>
  72. 72. Solution Part (b) <ul><li>E T = 1.43 x 10 7 N C -1 </li></ul>
  73. 73. Solution Part (b) <ul><li>From trigonometry </li></ul><ul><li> = 29.4 o </li></ul><ul><li>E T = 1.4 x 10 7 N C -1 29 o clockwise from E 1 </li></ul>
  74. 74. Motion of Charges in a Field <ul><li>A charge that is free to move in a uniform electric field ; </li></ul><ul><ul><li>behaves in a similar way to a mass in a gravitational field. </li></ul></ul><ul><li>In a gravitational field, an object which moves towards the earth ; </li></ul><ul><ul><li>experiences a force that converts P.E. to K.E. </li></ul></ul>
  75. 75. Motion of Charges in a Field <ul><li>When energy is converted from one form to another ; </li></ul><ul><ul><li>work is done. </li></ul></ul><ul><li>No work is done in the component that is parallel to the ground . </li></ul>
  76. 76. Motion of Charges in a Field <ul><li>In an electric field, the same applies. </li></ul><ul><li>When a charge moves parallel to the conducting surface ; </li></ul><ul><ul><li>no work is done . </li></ul></ul><ul><li>The force only acts radially from the surface ; </li></ul><ul><ul><li>its velocity is unchanged. </li></ul></ul>
  77. 77. Motion of Charges in a Field <ul><li>There cannot be a field inside a conductor no matter its shape. </li></ul><ul><li>Field lines show the direction ; </li></ul><ul><ul><li>a positive charge would move if placed in the field. </li></ul></ul><ul><li>As all points on the surface of the conductor are at the same potential ; </li></ul><ul><ul><li>the field lines would start and finish at exactly the same potential. </li></ul></ul>
  78. 78. Motion of Charges in a Field <ul><li>No work would be done ; </li></ul><ul><ul><li>the charges would not experience a force , </li></ul></ul><ul><ul><li>compelling them to move. </li></ul></ul><ul><li>No charge actually resides within the conductor itself. </li></ul>
  79. 79. Motion of Charges in a Field <ul><li>If the electric field is strong enough ; </li></ul><ul><ul><li>the air can be ionised. </li></ul></ul><ul><li>This is most likely to occur where charges accumulate ; </li></ul><ul><ul><li>about sharp points. </li></ul></ul><ul><li>When this occurs ; </li></ul><ul><ul><li>field lines are concentrated. </li></ul></ul>
  80. 80. Motion of Charges in a Field <ul><li>When you see the ‘electric wind’ from a ‘windmill’ placed on top a Van de Graaf Generator ; </li></ul><ul><ul><li>it is because the air is being ionised , </li></ul></ul><ul><ul><li>charges are repelling. </li></ul></ul><ul><li>This is called Corona Discharge ; </li></ul><ul><ul><li>major application to modern electronic office equipment. </li></ul></ul>
  81. 81. Motion of Charges in a Field <ul><li>  Another example of Corona Discharge is when a needle, held in place on a Van de Graaf Generator ; </li></ul><ul><ul><li>seen to deflect a candle flame. </li></ul></ul>
  82. 82. Photocopiers & Laser Printers <ul><li>To produce a page from a photocopier or laser printer is essentially the same process. </li></ul><ul><li>There are five steps in the process. </li></ul><ul><li>Photocopier Stages </li></ul>
  83. 83. Photocopiers & Laser Printers <ul><li>Step 1:Charging the Photoconductive Drum. </li></ul><ul><li>The drum has the special property of being an electrical insulator in the dark ; </li></ul><ul><li>an electrical conductor when exposed to light. </li></ul>
  84. 84. Photocopiers & Laser Printers <ul><li>The material used to coat the earthed aluminium drum ; </li></ul><ul><ul><li>3 - 15 cm in diameter , </li></ul></ul><ul><ul><li>to achieve this effect is commonly selenium. </li></ul></ul>
  85. 85. Photocopiers & Laser Printers <ul><li>Near the drum is a thin corona wire ; </li></ul><ul><ul><li>voltage of about 6000V between it and the drum , </li></ul></ul><ul><ul><li>extends for the length of the drum. </li></ul></ul><ul><li>The polarity can vary depending on the design. </li></ul>
  86. 86. Photocopiers & Laser Printers
  87. 87. Photocopiers & Laser Printers <ul><li>The electric field near the corona wire ; </li></ul><ul><ul><li>accelerates any ions in the atmosphere , </li></ul></ul><ul><ul><li>to high velocities. </li></ul></ul><ul><li>They in turn collide with neutral atoms in the air ; </li></ul><ul><ul><li>knocking out some electrons. </li></ul></ul>
  88. 88. Photocopiers & Laser Printers <ul><li>These free electrons attach themselves to other neutral atoms. </li></ul><ul><li>From this process ; </li></ul><ul><ul><li>large amounts of positive and negative ions are formed , </li></ul></ul><ul><ul><li>as more and more collisions occur. </li></ul></ul>
  89. 89. Photocopiers & Laser Printers <ul><li>These charged ions are attracted to either ; </li></ul><ul><ul><li>the corona wire , </li></ul></ul><ul><ul><li>or the drum. </li></ul></ul><ul><li>On reaching the drum ; </li></ul><ul><ul><li>they charge the photoconductive coating uniformly , </li></ul></ul><ul><ul><li>as the drum rotates. </li></ul></ul>
  90. 90. Photocopiers & Laser Printers <ul><li>Step 2:Producing a Latent Image on the Drum </li></ul><ul><li>The image is then projected onto the drum. </li></ul><ul><li>The light areas become conductive and the charge is then deposited by step 1; </li></ul><ul><ul><li>move through the photoconductive coating , </li></ul></ul><ul><ul><li>to the aluminium drum underneath , </li></ul></ul><ul><ul><li>and then to ground. </li></ul></ul>
  91. 91. Photocopiers & Laser Printers <ul><li>The dark parts of the image act as an insulator ; </li></ul><ul><ul><li>these areas of the drum remain uncharged. </li></ul></ul><ul><li>A latent image now exists in a charge pattern on the drum. </li></ul>
  92. 92. Photocopiers & Laser Printers <ul><li>It is essentially in this step of how the image is projected onto the drum that ; </li></ul><ul><ul><li>a photocopier , </li></ul></ul><ul><ul><li>and laser printer differs. </li></ul></ul><ul><li>Photocopiers use mirrors as shown below. </li></ul>
  93. 93. Photocopiers & Laser Printers
  94. 94. Photocopiers & Laser Printers <ul><li>Laser printers use a laser to scan the photoconductive layer ; </li></ul><ul><ul><li>a line at a time. </li></ul></ul><ul><li>The laser switches on or off as required. </li></ul>
  95. 95. Photocopiers & Laser Printers <ul><li>A 600 dpi (dots per inch) laser can switch on and off ; </li></ul><ul><ul><li>600 times per line and scan , </li></ul></ul><ul><ul><li>600 lines per inch. </li></ul></ul>
  96. 96. Photocopiers & Laser Printers <ul><li>Step 3:Applying the Toner </li></ul><ul><li>A powder consisting of carbon and resins ; </li></ul><ul><ul><li>called toner . </li></ul></ul><ul><li>M ixed with another powder , </li></ul><ul><ul><li>called a carrier , </li></ul></ul><ul><ul><li>consisting of larger particles , </li></ul></ul><ul><ul><li>of iron coated in resin. </li></ul></ul>
  97. 97. Photocopiers & Laser Printers <ul><li>As they mix ; </li></ul><ul><ul><li>they become oppositely charged . </li></ul></ul><ul><li>E lectrostatic attraction between the particles ; </li></ul><ul><ul><li>causes the toner particles to , </li></ul></ul><ul><ul><li>coat the carrier particles. </li></ul></ul>
  98. 98. Photocopiers & Laser Printers
  99. 99. Photocopiers & Laser Printers <ul><li>A magnetic roller, next to the drum ; </li></ul><ul><ul><li>attracts the iron particles in the carrier ; </li></ul></ul><ul><ul><li>which form hair like bristles on the roller. </li></ul></ul>
  100. 100. Photocopiers & Laser Printers <ul><li>When they come in proximity to the relatively higher charged drum ; </li></ul><ul><ul><li>the toner particles are attracted to the drum , </li></ul></ul><ul><ul><li>and leave the magnetic roller. </li></ul></ul>
  101. 101. Photocopiers & Laser Printers
  102. 102. Photocopiers & Laser Printers <ul><li>Step 4:Transferring the Toner to the Paper </li></ul><ul><li>The paper is charged the same sign as that on the drum ; </li></ul><ul><ul><li>using another corona wire , </li></ul></ul><ul><ul><li>called the transfer corona . </li></ul></ul>
  103. 103. Photocopiers & Laser Printers <ul><li>The paper then is brought into contact with the drum. </li></ul><ul><li>As the charge on the paper is much higher ; </li></ul><ul><ul><li>the toner transfers to the paper. </li></ul></ul>
  104. 104. Photocopiers & Laser Printers <ul><li>So the paper does not cling to the drum, the extra charge on the paper is removed ; </li></ul><ul><ul><li>using another oppositely charged corona wire , </li></ul></ul><ul><ul><li>called the separation corona . </li></ul></ul>
  105. 105. Photocopiers & Laser Printers
  106. 106. Photocopiers & Laser Printers <ul><li>Step 5:Fixing the Image and Cleaning the Drum. </li></ul><ul><li>At this stage the toner is still a powder ; </li></ul><ul><ul><li>can easily be brushed away. </li></ul></ul>
  107. 107. Photocopiers & Laser Printers <ul><li>The imaged is fixed by passing the paper between a pair of rollers ; </li></ul><ul><ul><li>heated to a high temperature. </li></ul></ul>
  108. 108. Photocopiers & Laser Printers <ul><li>This melts the toner ; </li></ul><ul><ul><li>rollers press it , </li></ul></ul><ul><ul><li>into the fibres of the paper. </li></ul></ul><ul><li>This is why the paper is often warm ; </li></ul><ul><ul><li>when it emerges from the photocopier. </li></ul></ul>
  109. 109. Photocopiers & Laser Printers <ul><li>The drum continues to rotate pas t a blade ; </li></ul><ul><ul><li>that removes any excess toner. </li></ul></ul><ul><li>The latent image is then removed by ; </li></ul><ul><ul><li>exposing the drum to a bright light , </li></ul></ul><ul><ul><li>ready for the next copy. </li></ul></ul><ul><li>The complete process is shown below. </li></ul>
  110. 110. Photocopiers & Laser Printers