Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Microenvironmental change as a mechanism to study global change


Published on

Global change is a set of significant processes that influence all aspects of ecosystem functioning and often-natural services within Santa Barbara County. The sensitivity of coastal and urban systems is certainly very high. However, profound changes are also predicted for arid and semi-arid systems globally, and California is no exception. These dryland systems are less buffered by oceanic processes and typically express high inter-annual variation in precipitation and temperatures in addition to perturbations associated with long-term droughts. However, climate estimates and downscaled values can present challenges in providing evidence at the scale relevant to individual species or individuals, and the importance of biotic interactions must be coupled to these estimates in space and time. Coupled indicators of key micro-environmental measures to both positive and negative interactions between foundation species and other organisms provide a metric of buffering capacity and resilience to global change at fine spatial scales. Consequently, the primary objective of this research project is to provide both the a well-articulated, ecologically relevant micro-environmental big data measure of global change within Santa Barbara County and a coupled estimate of concurrent changes in interactions in key species within the region.

Shrubs directly and indirectly buffered local changes in the microenvironment thereby functioning as refuges for other species within arid and semi-arid regions subject to dramatic global change drivers. The following major patterns were identified: (i) shrub micro-environments reduce the level of stress and amplitude of variation associated with temperature and moisture, (ii) many plant and animal species including threatened lizards are relatively more common with shrubs within the region, and (iii) the variation in the interaction patterns between species relates to the extent of amelioration provided by shrub-biodiversity complexes within the region. The ecological theory of positive plant interactions scaling to other species as a restoration and management tool is a dominant and rapidly evolving field of research. Micro-environmental sensor arrays are a scientifically valid approach to identify meaningful localized change with biotic interactions. Global change is predicted to negatively impact not just species but interactions between species, and loss in the latter can accelerate decline rates. Change at relevant scales must be measured to sustain larger, predictive models. Conspicuous species such as shrubs within ecosystems must be studied in conjunction with endangered species to ensure that informed management is viable.

Github repo for statistics:

Published in: Environment
  • Be the first to comment

  • Be the first to like this

Microenvironmental change as a mechanism to study global change

  1. 1. @cjlortie micronet
  2. 2. landscapes inspire global change at large scales
  3. 3. macro-climate to micro-environmental impacts
  4. 4. the microverse a plant’s eye view
  5. 5. foundation species two-phase contrasts: shrub-open micro-environments
  6. 6. direct & indirect effects
  7. 7. regional gradient contrasting elevation & aridity
  8. 8. The hypothesis tested is that shrubs directly and indirectly buffer local changes in the microenvironment thereby functioning as refuges for other species within arid and semi-arid regions subject to dramatic global change drivers.
  9. 9. plants & animals respond to shrubs in arid ecosystems
  10. 10. macro-climate big data scrape
  11. 11. macro-differences = regional gradient
  12. 12. test system within California, San Joaquin Desert genuine desert
  13. 13. foundation species respond to macro-climate
  14. 14. however, foundation species modify micro-environmental conditions
  15. 15. two-phase micro contrasts important to animals
  16. 16. two-phase micro contrasts important to other plant species
  17. 17. species-specific responses to desert micro-environments
  18. 18. implications amplitude of change biomagnification scale loss of interactions 
 can precede 
 loss of species
  19. 19.