SlideShare a Scribd company logo
1 of 27
Download to read offline
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
WITH FROM
Thu 27 February at 10am PT
Using Postgres & Citus
for Lightning Fast
Analytics
PRESENTED BY:
SAI
SRIRAMPUR
LIVE DEMO
Sai Srirampur | Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
Ask private questions in
Q&A panel (mouseover at
bottom to see Q&A icon)
We plan to do 1-2 quick
polls.
Logistics
X
Sai Srirampur | PyConCA 2018
• Sai Srirampur a.k.a Sai
• Engineer at Citus Data
(now part of the Microsoft family!!)
• Joined Citus to make it so
developers never have to
worry about scaling their
database
• Recently got married!
• Follow me @saisrirampur
@citusdata
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
Does
this
sound
like
you?
Hitting resource limits
with single-node
Postgres, but don’t want
to give up Postgres
1
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
Want to reduce dev costs
by consolidating—&
avoid separate stores for
analytics (OLAP) &
transactional workloads
(OLTP)
Does
this
sound
like
you?
2
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
Does
this
sound
like
you?
Pre-aggregation or rollup
pipeline lags and never
catches up
3
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
Why ! Postgres? TLDR;
Open source
Constraints
Extensions
PostGIS / Geospatial
HLL, TopN, Citus
Foreign data wrappers
Rich SQL
CTEs
Window functions
Full text search
Datatypes
JSONB
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
Q: Why Citus?
A: Citus transforms Postgres into a
distributed database
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
TLDR; on scaling out Postgres w/Citus
1. Distributes data across multiple nodes
2. More memory, cpu, disk + parallelization
3. Extension to Postgres (not a fork)
DATABASE AS A SERVICE ENTERPRISE SOFTWARE OPEN SOURCE
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 201911
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
What is a rollup?
Period Customer Country Site Hit Count
SELECT…
Pre-computed aggregates for a period and set of (group by)
dimensions.
Can be further filtered and aggregated to generate charts.
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
What are the benefits of rollups?
• Fast (indexed) lookups of aggregates
• Avoid expensive repeated computation
• Rollups can be further aggregated
• Rollups are compact, can be kept over longer periods
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
What is hll?
• Approximation algorithm (“sketch” algorithm)
• Estimates COUNT(DISTINCT)/cardinality of given data
• Extension on postgres: hll
• hll data type to store distinct values
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
Already provisioned a 4-node Citus database cluster
for today’s demo / & regular Postgres on single node
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
Load data
Create indexes (btree and GIN)
Query patterns in analytics workload
Rollup queries
What I will show you in today’s analytics demo?
Citus 4-
node
cluster
Single
node
Postgres
TOP
BOTTOM
Load data
Create indexes (btree and GIN)
Query patterns in analytics workload
Rollup queries
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
Sai Srirampur | PyConCA 2018
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
1/ Parallelism
2/ Linear scale
3/ Freshness (real-time, concurrency)
4/ Both transactional && analytics
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
1/ Faster rollups - parallelism - no lag
2/ Increase granularity of period
3/ Store and query longer periods of data
4/ Extensions - hll, topn, pg_cron, pg_partman
Enhance your rollup pipeline with
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
Sai Srirampur | PyConCA 2018
citusdata.com/customers/heap
citusdata.com/customers/heap
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 201922
citusdata.com/customers/algolia
Scaling Postgres for Time Series Data with Citus | Nov 15 2018 | Marco Slot | Claire Giordano
Using Postgres and Citus for Lightning Fast Analytics | February 2019
Min Wei of
Microsoft
Scaling Postgres for Time Series Data with Citus | Nov 15 2018 | Marco Slot | Claire Giordano
Using Postgres and Citus for Lightning Fast Analytics | February 2019
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 201926
Any Questions?? (And, resources)
DOWNLOAD CITUS OPEN SOURCE:
https://www.citusdata.com/download
CREATE CITUS CLOUD DEV ACCOUNT:
https://www.citusdata.com/product/cloud
JOIN OUR PUBLIC SLACK:
https://slack.citusdata.com/
Live Demo of Citus Cloud | July 2018
www.citusdata.com @citusdata
© 2019 Citus Data. All rights reserved.
Sai Srirampur | @saisrirampur
Thank you for your time

More Related Content

What's hot

Building real time analytics applications using pinot : A LinkedIn case study
Building real time analytics applications using pinot : A LinkedIn case studyBuilding real time analytics applications using pinot : A LinkedIn case study
Building real time analytics applications using pinot : A LinkedIn case studyKishore Gopalakrishna
 
AI on Spark for Malware Analysis and Anomalous Threat Detection
AI on Spark for Malware Analysis and Anomalous Threat DetectionAI on Spark for Malware Analysis and Anomalous Threat Detection
AI on Spark for Malware Analysis and Anomalous Threat DetectionDatabricks
 
Unified Framework for Real Time, Near Real Time and Offline Analysis of Video...
Unified Framework for Real Time, Near Real Time and Offline Analysis of Video...Unified Framework for Real Time, Near Real Time and Offline Analysis of Video...
Unified Framework for Real Time, Near Real Time and Offline Analysis of Video...Spark Summit
 
Spark and the Future of Advanced Analytics by Thomas Dinsmore
Spark and the Future of Advanced Analytics by Thomas DinsmoreSpark and the Future of Advanced Analytics by Thomas Dinsmore
Spark and the Future of Advanced Analytics by Thomas DinsmoreSpark Summit
 
Reliable Performance at Scale with Apache Spark on Kubernetes
Reliable Performance at Scale with Apache Spark on KubernetesReliable Performance at Scale with Apache Spark on Kubernetes
Reliable Performance at Scale with Apache Spark on KubernetesDatabricks
 
OAP: Optimized Analytics Package for Spark Platform with Daoyuan Wang and Yua...
OAP: Optimized Analytics Package for Spark Platform with Daoyuan Wang and Yua...OAP: Optimized Analytics Package for Spark Platform with Daoyuan Wang and Yua...
OAP: Optimized Analytics Package for Spark Platform with Daoyuan Wang and Yua...Databricks
 
Putting Lipstick on Apache Pig at Netflix
Putting Lipstick on Apache Pig at NetflixPutting Lipstick on Apache Pig at Netflix
Putting Lipstick on Apache Pig at NetflixJeff Magnusson
 
Analyzing IOT Data in Apache Spark Across Data Centers and Cloud with NetApp ...
Analyzing IOT Data in Apache Spark Across Data Centers and Cloud with NetApp ...Analyzing IOT Data in Apache Spark Across Data Centers and Cloud with NetApp ...
Analyzing IOT Data in Apache Spark Across Data Centers and Cloud with NetApp ...Databricks
 
Data Warehousing with Spark Streaming at Zalando
Data Warehousing with Spark Streaming at ZalandoData Warehousing with Spark Streaming at Zalando
Data Warehousing with Spark Streaming at ZalandoDatabricks
 
Kylin and Druid Presentation
Kylin and Druid PresentationKylin and Druid Presentation
Kylin and Druid Presentationargonauts007
 
Apache Spark Listeners: A Crash Course in Fast, Easy Monitoring
Apache Spark Listeners: A Crash Course in Fast, Easy MonitoringApache Spark Listeners: A Crash Course in Fast, Easy Monitoring
Apache Spark Listeners: A Crash Course in Fast, Easy MonitoringDatabricks
 
Spark Autotuning: Spark Summit East talk by Lawrence Spracklen
Spark Autotuning: Spark Summit East talk by Lawrence SpracklenSpark Autotuning: Spark Summit East talk by Lawrence Spracklen
Spark Autotuning: Spark Summit East talk by Lawrence SpracklenSpark Summit
 
Debugging Big Data Analytics in Apache Spark with BigDebug with Muhammad Gulz...
Debugging Big Data Analytics in Apache Spark with BigDebug with Muhammad Gulz...Debugging Big Data Analytics in Apache Spark with BigDebug with Muhammad Gulz...
Debugging Big Data Analytics in Apache Spark with BigDebug with Muhammad Gulz...Databricks
 
Bringing HPC Algorithms to Big Data Platforms: Spark Summit East talk by Niko...
Bringing HPC Algorithms to Big Data Platforms: Spark Summit East talk by Niko...Bringing HPC Algorithms to Big Data Platforms: Spark Summit East talk by Niko...
Bringing HPC Algorithms to Big Data Platforms: Spark Summit East talk by Niko...Spark Summit
 
Bridging the Gap Between Data Scientists and Software Engineers – Deploying L...
Bridging the Gap Between Data Scientists and Software Engineers – Deploying L...Bridging the Gap Between Data Scientists and Software Engineers – Deploying L...
Bridging the Gap Between Data Scientists and Software Engineers – Deploying L...Databricks
 
How to use Parquet as a Sasis for ETL and Analytics
How to use Parquet as a Sasis for ETL and AnalyticsHow to use Parquet as a Sasis for ETL and Analytics
How to use Parquet as a Sasis for ETL and AnalyticsDataWorks Summit
 
Realtime Data Analysis Patterns
Realtime Data Analysis PatternsRealtime Data Analysis Patterns
Realtime Data Analysis PatternsMikio L. Braun
 
Make your PySpark Data Fly with Arrow!
Make your PySpark Data Fly with Arrow!Make your PySpark Data Fly with Arrow!
Make your PySpark Data Fly with Arrow!Databricks
 
Performance Analysis of Apache Spark and Presto in Cloud Environments
Performance Analysis of Apache Spark and Presto in Cloud EnvironmentsPerformance Analysis of Apache Spark and Presto in Cloud Environments
Performance Analysis of Apache Spark and Presto in Cloud EnvironmentsDatabricks
 
Using SparkML to Power a DSaaS (Data Science as a Service) with Kiran Muglurm...
Using SparkML to Power a DSaaS (Data Science as a Service) with Kiran Muglurm...Using SparkML to Power a DSaaS (Data Science as a Service) with Kiran Muglurm...
Using SparkML to Power a DSaaS (Data Science as a Service) with Kiran Muglurm...Databricks
 

What's hot (20)

Building real time analytics applications using pinot : A LinkedIn case study
Building real time analytics applications using pinot : A LinkedIn case studyBuilding real time analytics applications using pinot : A LinkedIn case study
Building real time analytics applications using pinot : A LinkedIn case study
 
AI on Spark for Malware Analysis and Anomalous Threat Detection
AI on Spark for Malware Analysis and Anomalous Threat DetectionAI on Spark for Malware Analysis and Anomalous Threat Detection
AI on Spark for Malware Analysis and Anomalous Threat Detection
 
Unified Framework for Real Time, Near Real Time and Offline Analysis of Video...
Unified Framework for Real Time, Near Real Time and Offline Analysis of Video...Unified Framework for Real Time, Near Real Time and Offline Analysis of Video...
Unified Framework for Real Time, Near Real Time and Offline Analysis of Video...
 
Spark and the Future of Advanced Analytics by Thomas Dinsmore
Spark and the Future of Advanced Analytics by Thomas DinsmoreSpark and the Future of Advanced Analytics by Thomas Dinsmore
Spark and the Future of Advanced Analytics by Thomas Dinsmore
 
Reliable Performance at Scale with Apache Spark on Kubernetes
Reliable Performance at Scale with Apache Spark on KubernetesReliable Performance at Scale with Apache Spark on Kubernetes
Reliable Performance at Scale with Apache Spark on Kubernetes
 
OAP: Optimized Analytics Package for Spark Platform with Daoyuan Wang and Yua...
OAP: Optimized Analytics Package for Spark Platform with Daoyuan Wang and Yua...OAP: Optimized Analytics Package for Spark Platform with Daoyuan Wang and Yua...
OAP: Optimized Analytics Package for Spark Platform with Daoyuan Wang and Yua...
 
Putting Lipstick on Apache Pig at Netflix
Putting Lipstick on Apache Pig at NetflixPutting Lipstick on Apache Pig at Netflix
Putting Lipstick on Apache Pig at Netflix
 
Analyzing IOT Data in Apache Spark Across Data Centers and Cloud with NetApp ...
Analyzing IOT Data in Apache Spark Across Data Centers and Cloud with NetApp ...Analyzing IOT Data in Apache Spark Across Data Centers and Cloud with NetApp ...
Analyzing IOT Data in Apache Spark Across Data Centers and Cloud with NetApp ...
 
Data Warehousing with Spark Streaming at Zalando
Data Warehousing with Spark Streaming at ZalandoData Warehousing with Spark Streaming at Zalando
Data Warehousing with Spark Streaming at Zalando
 
Kylin and Druid Presentation
Kylin and Druid PresentationKylin and Druid Presentation
Kylin and Druid Presentation
 
Apache Spark Listeners: A Crash Course in Fast, Easy Monitoring
Apache Spark Listeners: A Crash Course in Fast, Easy MonitoringApache Spark Listeners: A Crash Course in Fast, Easy Monitoring
Apache Spark Listeners: A Crash Course in Fast, Easy Monitoring
 
Spark Autotuning: Spark Summit East talk by Lawrence Spracklen
Spark Autotuning: Spark Summit East talk by Lawrence SpracklenSpark Autotuning: Spark Summit East talk by Lawrence Spracklen
Spark Autotuning: Spark Summit East talk by Lawrence Spracklen
 
Debugging Big Data Analytics in Apache Spark with BigDebug with Muhammad Gulz...
Debugging Big Data Analytics in Apache Spark with BigDebug with Muhammad Gulz...Debugging Big Data Analytics in Apache Spark with BigDebug with Muhammad Gulz...
Debugging Big Data Analytics in Apache Spark with BigDebug with Muhammad Gulz...
 
Bringing HPC Algorithms to Big Data Platforms: Spark Summit East talk by Niko...
Bringing HPC Algorithms to Big Data Platforms: Spark Summit East talk by Niko...Bringing HPC Algorithms to Big Data Platforms: Spark Summit East talk by Niko...
Bringing HPC Algorithms to Big Data Platforms: Spark Summit East talk by Niko...
 
Bridging the Gap Between Data Scientists and Software Engineers – Deploying L...
Bridging the Gap Between Data Scientists and Software Engineers – Deploying L...Bridging the Gap Between Data Scientists and Software Engineers – Deploying L...
Bridging the Gap Between Data Scientists and Software Engineers – Deploying L...
 
How to use Parquet as a Sasis for ETL and Analytics
How to use Parquet as a Sasis for ETL and AnalyticsHow to use Parquet as a Sasis for ETL and Analytics
How to use Parquet as a Sasis for ETL and Analytics
 
Realtime Data Analysis Patterns
Realtime Data Analysis PatternsRealtime Data Analysis Patterns
Realtime Data Analysis Patterns
 
Make your PySpark Data Fly with Arrow!
Make your PySpark Data Fly with Arrow!Make your PySpark Data Fly with Arrow!
Make your PySpark Data Fly with Arrow!
 
Performance Analysis of Apache Spark and Presto in Cloud Environments
Performance Analysis of Apache Spark and Presto in Cloud EnvironmentsPerformance Analysis of Apache Spark and Presto in Cloud Environments
Performance Analysis of Apache Spark and Presto in Cloud Environments
 
Using SparkML to Power a DSaaS (Data Science as a Service) with Kiran Muglurm...
Using SparkML to Power a DSaaS (Data Science as a Service) with Kiran Muglurm...Using SparkML to Power a DSaaS (Data Science as a Service) with Kiran Muglurm...
Using SparkML to Power a DSaaS (Data Science as a Service) with Kiran Muglurm...
 

Similar to Using Postgres and Citus for Lightning Fast Analytics, also ft. Rollups | Live Demo | Sai Srirampur

The State of Postgres | Strata San Jose 2018 | Umur Cubukcu
The State of Postgres | Strata San Jose 2018 | Umur CubukcuThe State of Postgres | Strata San Jose 2018 | Umur Cubukcu
The State of Postgres | Strata San Jose 2018 | Umur CubukcuCitus Data
 
SplunkLive! Frankfurt 2018 - Integrating Metrics & Logs
SplunkLive! Frankfurt 2018 - Integrating Metrics & LogsSplunkLive! Frankfurt 2018 - Integrating Metrics & Logs
SplunkLive! Frankfurt 2018 - Integrating Metrics & LogsSplunk
 
Apache AGE and the synergy effect in the combination of Postgres and NoSQL
 Apache AGE and the synergy effect in the combination of Postgres and NoSQL Apache AGE and the synergy effect in the combination of Postgres and NoSQL
Apache AGE and the synergy effect in the combination of Postgres and NoSQLEDB
 
Data Engineer's Lunch 96: Intro to Real Time Analytics Using Apache Pinot
Data Engineer's Lunch 96: Intro to Real Time Analytics Using Apache PinotData Engineer's Lunch 96: Intro to Real Time Analytics Using Apache Pinot
Data Engineer's Lunch 96: Intro to Real Time Analytics Using Apache PinotAnant Corporation
 
Data Engineer's Lunch 96: Intro to Real Time Analytics Using Apache Pinot
Data Engineer's Lunch 96: Intro to Real Time Analytics Using Apache PinotData Engineer's Lunch 96: Intro to Real Time Analytics Using Apache Pinot
Data Engineer's Lunch 96: Intro to Real Time Analytics Using Apache PinotAnant Corporation
 
Before vs After: Redesigning a Website to be Useful and Informative for Devel...
Before vs After: Redesigning a Website to be Useful and Informative for Devel...Before vs After: Redesigning a Website to be Useful and Informative for Devel...
Before vs After: Redesigning a Website to be Useful and Informative for Devel...Teresa Giacomini
 
INTERFACE, by apidays - The Evolution of Data Movement.pdf
INTERFACE, by apidays - The Evolution of Data Movement.pdfINTERFACE, by apidays - The Evolution of Data Movement.pdf
INTERFACE, by apidays - The Evolution of Data Movement.pdfapidays
 
[Webinar] Measure Twice, Build Once: Real-Time Predictive Analytics
[Webinar] Measure Twice, Build Once: Real-Time Predictive Analytics[Webinar] Measure Twice, Build Once: Real-Time Predictive Analytics
[Webinar] Measure Twice, Build Once: Real-Time Predictive AnalyticsInfochimps, a CSC Big Data Business
 
IRJET- Analysis of Boston’s Crime Data using Apache Pig
IRJET- Analysis of Boston’s Crime Data using Apache PigIRJET- Analysis of Boston’s Crime Data using Apache Pig
IRJET- Analysis of Boston’s Crime Data using Apache PigIRJET Journal
 
SplunkLive! Munich 2018: Integrating Metrics and Logs
SplunkLive! Munich 2018: Integrating Metrics and LogsSplunkLive! Munich 2018: Integrating Metrics and Logs
SplunkLive! Munich 2018: Integrating Metrics and LogsSplunk
 
Combinação de logs, métricas e rastreamentos para observabilidade unificada
Combinação de logs, métricas e rastreamentos para observabilidade unificadaCombinação de logs, métricas e rastreamentos para observabilidade unificada
Combinação de logs, métricas e rastreamentos para observabilidade unificadaElasticsearch
 
Denys Kovalenko "Scaling Data Science at Bolt"
Denys Kovalenko "Scaling Data Science at Bolt"Denys Kovalenko "Scaling Data Science at Bolt"
Denys Kovalenko "Scaling Data Science at Bolt"Fwdays
 
Tuning for Systematic Trading: Talk 2: Deep Learning
Tuning for Systematic Trading: Talk 2: Deep LearningTuning for Systematic Trading: Talk 2: Deep Learning
Tuning for Systematic Trading: Talk 2: Deep LearningSigOpt
 
Combining Logs, Metrics, and Traces for Unified Observability
Combining Logs, Metrics, and Traces for Unified ObservabilityCombining Logs, Metrics, and Traces for Unified Observability
Combining Logs, Metrics, and Traces for Unified ObservabilityElasticsearch
 
ODSC18, London, How to build high performing weighted XGBoost ML Model for Re...
ODSC18, London, How to build high performing weighted XGBoost ML Model for Re...ODSC18, London, How to build high performing weighted XGBoost ML Model for Re...
ODSC18, London, How to build high performing weighted XGBoost ML Model for Re...Alok Singh
 
StasD & Graphite - Measure anything, Measure Everything
StasD & Graphite - Measure anything, Measure EverythingStasD & Graphite - Measure anything, Measure Everything
StasD & Graphite - Measure anything, Measure EverythingAvi Revivo
 
M|18 GPU Accelerated Data Processing
M|18 GPU Accelerated Data ProcessingM|18 GPU Accelerated Data Processing
M|18 GPU Accelerated Data ProcessingMariaDB plc
 
SplunkLive! Paris 2018: Integrating Metrics and Logs
SplunkLive! Paris 2018: Integrating Metrics and LogsSplunkLive! Paris 2018: Integrating Metrics and Logs
SplunkLive! Paris 2018: Integrating Metrics and LogsSplunk
 
Meetup 27/6/2018: AIOPS om de uitdagingen van een slimme stad te ondersteunen
Meetup 27/6/2018: AIOPS om de uitdagingen van een slimme stad te ondersteunenMeetup 27/6/2018: AIOPS om de uitdagingen van een slimme stad te ondersteunen
Meetup 27/6/2018: AIOPS om de uitdagingen van een slimme stad te ondersteunenDigipolis Antwerpen
 

Similar to Using Postgres and Citus for Lightning Fast Analytics, also ft. Rollups | Live Demo | Sai Srirampur (20)

The State of Postgres | Strata San Jose 2018 | Umur Cubukcu
The State of Postgres | Strata San Jose 2018 | Umur CubukcuThe State of Postgres | Strata San Jose 2018 | Umur Cubukcu
The State of Postgres | Strata San Jose 2018 | Umur Cubukcu
 
SplunkLive! Frankfurt 2018 - Integrating Metrics & Logs
SplunkLive! Frankfurt 2018 - Integrating Metrics & LogsSplunkLive! Frankfurt 2018 - Integrating Metrics & Logs
SplunkLive! Frankfurt 2018 - Integrating Metrics & Logs
 
Apache AGE and the synergy effect in the combination of Postgres and NoSQL
 Apache AGE and the synergy effect in the combination of Postgres and NoSQL Apache AGE and the synergy effect in the combination of Postgres and NoSQL
Apache AGE and the synergy effect in the combination of Postgres and NoSQL
 
Data Engineer's Lunch 96: Intro to Real Time Analytics Using Apache Pinot
Data Engineer's Lunch 96: Intro to Real Time Analytics Using Apache PinotData Engineer's Lunch 96: Intro to Real Time Analytics Using Apache Pinot
Data Engineer's Lunch 96: Intro to Real Time Analytics Using Apache Pinot
 
Data Engineer's Lunch 96: Intro to Real Time Analytics Using Apache Pinot
Data Engineer's Lunch 96: Intro to Real Time Analytics Using Apache PinotData Engineer's Lunch 96: Intro to Real Time Analytics Using Apache Pinot
Data Engineer's Lunch 96: Intro to Real Time Analytics Using Apache Pinot
 
Before vs After: Redesigning a Website to be Useful and Informative for Devel...
Before vs After: Redesigning a Website to be Useful and Informative for Devel...Before vs After: Redesigning a Website to be Useful and Informative for Devel...
Before vs After: Redesigning a Website to be Useful and Informative for Devel...
 
INTERFACE, by apidays - The Evolution of Data Movement.pdf
INTERFACE, by apidays - The Evolution of Data Movement.pdfINTERFACE, by apidays - The Evolution of Data Movement.pdf
INTERFACE, by apidays - The Evolution of Data Movement.pdf
 
[Webinar] Measure Twice, Build Once: Real-Time Predictive Analytics
[Webinar] Measure Twice, Build Once: Real-Time Predictive Analytics[Webinar] Measure Twice, Build Once: Real-Time Predictive Analytics
[Webinar] Measure Twice, Build Once: Real-Time Predictive Analytics
 
IRJET- Analysis of Boston’s Crime Data using Apache Pig
IRJET- Analysis of Boston’s Crime Data using Apache PigIRJET- Analysis of Boston’s Crime Data using Apache Pig
IRJET- Analysis of Boston’s Crime Data using Apache Pig
 
SplunkLive! Munich 2018: Integrating Metrics and Logs
SplunkLive! Munich 2018: Integrating Metrics and LogsSplunkLive! Munich 2018: Integrating Metrics and Logs
SplunkLive! Munich 2018: Integrating Metrics and Logs
 
Newest mmis resume
Newest mmis  resumeNewest mmis  resume
Newest mmis resume
 
Combinação de logs, métricas e rastreamentos para observabilidade unificada
Combinação de logs, métricas e rastreamentos para observabilidade unificadaCombinação de logs, métricas e rastreamentos para observabilidade unificada
Combinação de logs, métricas e rastreamentos para observabilidade unificada
 
Denys Kovalenko "Scaling Data Science at Bolt"
Denys Kovalenko "Scaling Data Science at Bolt"Denys Kovalenko "Scaling Data Science at Bolt"
Denys Kovalenko "Scaling Data Science at Bolt"
 
Tuning for Systematic Trading: Talk 2: Deep Learning
Tuning for Systematic Trading: Talk 2: Deep LearningTuning for Systematic Trading: Talk 2: Deep Learning
Tuning for Systematic Trading: Talk 2: Deep Learning
 
Combining Logs, Metrics, and Traces for Unified Observability
Combining Logs, Metrics, and Traces for Unified ObservabilityCombining Logs, Metrics, and Traces for Unified Observability
Combining Logs, Metrics, and Traces for Unified Observability
 
ODSC18, London, How to build high performing weighted XGBoost ML Model for Re...
ODSC18, London, How to build high performing weighted XGBoost ML Model for Re...ODSC18, London, How to build high performing weighted XGBoost ML Model for Re...
ODSC18, London, How to build high performing weighted XGBoost ML Model for Re...
 
StasD & Graphite - Measure anything, Measure Everything
StasD & Graphite - Measure anything, Measure EverythingStasD & Graphite - Measure anything, Measure Everything
StasD & Graphite - Measure anything, Measure Everything
 
M|18 GPU Accelerated Data Processing
M|18 GPU Accelerated Data ProcessingM|18 GPU Accelerated Data Processing
M|18 GPU Accelerated Data Processing
 
SplunkLive! Paris 2018: Integrating Metrics and Logs
SplunkLive! Paris 2018: Integrating Metrics and LogsSplunkLive! Paris 2018: Integrating Metrics and Logs
SplunkLive! Paris 2018: Integrating Metrics and Logs
 
Meetup 27/6/2018: AIOPS om de uitdagingen van een slimme stad te ondersteunen
Meetup 27/6/2018: AIOPS om de uitdagingen van een slimme stad te ondersteunenMeetup 27/6/2018: AIOPS om de uitdagingen van een slimme stad te ondersteunen
Meetup 27/6/2018: AIOPS om de uitdagingen van een slimme stad te ondersteunen
 

More from Citus Data

Data Modeling, Normalization, and De-Normalization | PostgresOpen 2019 | Dimi...
Data Modeling, Normalization, and De-Normalization | PostgresOpen 2019 | Dimi...Data Modeling, Normalization, and De-Normalization | PostgresOpen 2019 | Dimi...
Data Modeling, Normalization, and De-Normalization | PostgresOpen 2019 | Dimi...Citus Data
 
JSONB Tricks: Operators, Indexes, and When (Not) to Use It | PostgresOpen 201...
JSONB Tricks: Operators, Indexes, and When (Not) to Use It | PostgresOpen 201...JSONB Tricks: Operators, Indexes, and When (Not) to Use It | PostgresOpen 201...
JSONB Tricks: Operators, Indexes, and When (Not) to Use It | PostgresOpen 201...Citus Data
 
Tutorial: Implementing your first Postgres extension | PGConf EU 2019 | Burak...
Tutorial: Implementing your first Postgres extension | PGConf EU 2019 | Burak...Tutorial: Implementing your first Postgres extension | PGConf EU 2019 | Burak...
Tutorial: Implementing your first Postgres extension | PGConf EU 2019 | Burak...Citus Data
 
Whats wrong with postgres | PGConf EU 2019 | Craig Kerstiens
Whats wrong with postgres | PGConf EU 2019 | Craig KerstiensWhats wrong with postgres | PGConf EU 2019 | Craig Kerstiens
Whats wrong with postgres | PGConf EU 2019 | Craig KerstiensCitus Data
 
When it all goes wrong | PGConf EU 2019 | Will Leinweber
When it all goes wrong | PGConf EU 2019 | Will LeinweberWhen it all goes wrong | PGConf EU 2019 | Will Leinweber
When it all goes wrong | PGConf EU 2019 | Will LeinweberCitus Data
 
Amazing SQL your ORM can (or can't) do | PGConf EU 2019 | Louise Grandjonc
Amazing SQL your ORM can (or can't) do | PGConf EU 2019 | Louise GrandjoncAmazing SQL your ORM can (or can't) do | PGConf EU 2019 | Louise Grandjonc
Amazing SQL your ORM can (or can't) do | PGConf EU 2019 | Louise GrandjoncCitus Data
 
What Microsoft is doing with Postgres & the Citus Data acquisition | PGConf E...
What Microsoft is doing with Postgres & the Citus Data acquisition | PGConf E...What Microsoft is doing with Postgres & the Citus Data acquisition | PGConf E...
What Microsoft is doing with Postgres & the Citus Data acquisition | PGConf E...Citus Data
 
Deep Postgres Extensions in Rust | PGCon 2019 | Jeff Davis
Deep Postgres Extensions in Rust | PGCon 2019 | Jeff DavisDeep Postgres Extensions in Rust | PGCon 2019 | Jeff Davis
Deep Postgres Extensions in Rust | PGCon 2019 | Jeff DavisCitus Data
 
Why Postgres Why This Database Why Now | SF Bay Area Postgres Meetup | Claire...
Why Postgres Why This Database Why Now | SF Bay Area Postgres Meetup | Claire...Why Postgres Why This Database Why Now | SF Bay Area Postgres Meetup | Claire...
Why Postgres Why This Database Why Now | SF Bay Area Postgres Meetup | Claire...Citus Data
 
A story on Postgres index types | PostgresLondon 2019 | Louise Grandjonc
A story on Postgres index types | PostgresLondon 2019 | Louise GrandjoncA story on Postgres index types | PostgresLondon 2019 | Louise Grandjonc
A story on Postgres index types | PostgresLondon 2019 | Louise GrandjoncCitus Data
 
Why developers need marketing now more than ever | GlueCon 2019 | Claire Gior...
Why developers need marketing now more than ever | GlueCon 2019 | Claire Gior...Why developers need marketing now more than ever | GlueCon 2019 | Claire Gior...
Why developers need marketing now more than ever | GlueCon 2019 | Claire Gior...Citus Data
 
The Art of PostgreSQL | PostgreSQL Ukraine | Dimitri Fontaine
The Art of PostgreSQL | PostgreSQL Ukraine | Dimitri FontaineThe Art of PostgreSQL | PostgreSQL Ukraine | Dimitri Fontaine
The Art of PostgreSQL | PostgreSQL Ukraine | Dimitri FontaineCitus Data
 
When it all goes wrong (with Postgres) | RailsConf 2019 | Will Leinweber
When it all goes wrong (with Postgres) | RailsConf 2019 | Will LeinweberWhen it all goes wrong (with Postgres) | RailsConf 2019 | Will Leinweber
When it all goes wrong (with Postgres) | RailsConf 2019 | Will LeinweberCitus Data
 
The Art of PostgreSQL | PostgreSQL Ukraine Meetup | Dimitri Fontaine
The Art of PostgreSQL | PostgreSQL Ukraine Meetup | Dimitri FontaineThe Art of PostgreSQL | PostgreSQL Ukraine Meetup | Dimitri Fontaine
The Art of PostgreSQL | PostgreSQL Ukraine Meetup | Dimitri FontaineCitus Data
 
How to write SQL queries | pgDay Paris 2019 | Dimitri Fontaine
How to write SQL queries | pgDay Paris 2019 | Dimitri FontaineHow to write SQL queries | pgDay Paris 2019 | Dimitri Fontaine
How to write SQL queries | pgDay Paris 2019 | Dimitri FontaineCitus Data
 
When it all Goes Wrong |Nordic PGDay 2019 | Will Leinweber
When it all Goes Wrong |Nordic PGDay 2019 | Will LeinweberWhen it all Goes Wrong |Nordic PGDay 2019 | Will Leinweber
When it all Goes Wrong |Nordic PGDay 2019 | Will LeinweberCitus Data
 
Why PostgreSQL Why This Database Why Now | Nordic PGDay 2019 | Claire Giordano
Why PostgreSQL Why This Database Why Now | Nordic PGDay 2019 | Claire GiordanoWhy PostgreSQL Why This Database Why Now | Nordic PGDay 2019 | Claire Giordano
Why PostgreSQL Why This Database Why Now | Nordic PGDay 2019 | Claire GiordanoCitus Data
 
Scaling Multi-Tenant Applications Using the Django ORM & Postgres | PyCaribbe...
Scaling Multi-Tenant Applications Using the Django ORM & Postgres | PyCaribbe...Scaling Multi-Tenant Applications Using the Django ORM & Postgres | PyCaribbe...
Scaling Multi-Tenant Applications Using the Django ORM & Postgres | PyCaribbe...Citus Data
 
Data Modeling, Normalization, and Denormalisation | FOSDEM '19 | Dimitri Font...
Data Modeling, Normalization, and Denormalisation | FOSDEM '19 | Dimitri Font...Data Modeling, Normalization, and Denormalisation | FOSDEM '19 | Dimitri Font...
Data Modeling, Normalization, and Denormalisation | FOSDEM '19 | Dimitri Font...Citus Data
 
Five data models for sharding and which is right | PGConf.ASIA 2018 | Craig K...
Five data models for sharding and which is right | PGConf.ASIA 2018 | Craig K...Five data models for sharding and which is right | PGConf.ASIA 2018 | Craig K...
Five data models for sharding and which is right | PGConf.ASIA 2018 | Craig K...Citus Data
 

More from Citus Data (20)

Data Modeling, Normalization, and De-Normalization | PostgresOpen 2019 | Dimi...
Data Modeling, Normalization, and De-Normalization | PostgresOpen 2019 | Dimi...Data Modeling, Normalization, and De-Normalization | PostgresOpen 2019 | Dimi...
Data Modeling, Normalization, and De-Normalization | PostgresOpen 2019 | Dimi...
 
JSONB Tricks: Operators, Indexes, and When (Not) to Use It | PostgresOpen 201...
JSONB Tricks: Operators, Indexes, and When (Not) to Use It | PostgresOpen 201...JSONB Tricks: Operators, Indexes, and When (Not) to Use It | PostgresOpen 201...
JSONB Tricks: Operators, Indexes, and When (Not) to Use It | PostgresOpen 201...
 
Tutorial: Implementing your first Postgres extension | PGConf EU 2019 | Burak...
Tutorial: Implementing your first Postgres extension | PGConf EU 2019 | Burak...Tutorial: Implementing your first Postgres extension | PGConf EU 2019 | Burak...
Tutorial: Implementing your first Postgres extension | PGConf EU 2019 | Burak...
 
Whats wrong with postgres | PGConf EU 2019 | Craig Kerstiens
Whats wrong with postgres | PGConf EU 2019 | Craig KerstiensWhats wrong with postgres | PGConf EU 2019 | Craig Kerstiens
Whats wrong with postgres | PGConf EU 2019 | Craig Kerstiens
 
When it all goes wrong | PGConf EU 2019 | Will Leinweber
When it all goes wrong | PGConf EU 2019 | Will LeinweberWhen it all goes wrong | PGConf EU 2019 | Will Leinweber
When it all goes wrong | PGConf EU 2019 | Will Leinweber
 
Amazing SQL your ORM can (or can't) do | PGConf EU 2019 | Louise Grandjonc
Amazing SQL your ORM can (or can't) do | PGConf EU 2019 | Louise GrandjoncAmazing SQL your ORM can (or can't) do | PGConf EU 2019 | Louise Grandjonc
Amazing SQL your ORM can (or can't) do | PGConf EU 2019 | Louise Grandjonc
 
What Microsoft is doing with Postgres & the Citus Data acquisition | PGConf E...
What Microsoft is doing with Postgres & the Citus Data acquisition | PGConf E...What Microsoft is doing with Postgres & the Citus Data acquisition | PGConf E...
What Microsoft is doing with Postgres & the Citus Data acquisition | PGConf E...
 
Deep Postgres Extensions in Rust | PGCon 2019 | Jeff Davis
Deep Postgres Extensions in Rust | PGCon 2019 | Jeff DavisDeep Postgres Extensions in Rust | PGCon 2019 | Jeff Davis
Deep Postgres Extensions in Rust | PGCon 2019 | Jeff Davis
 
Why Postgres Why This Database Why Now | SF Bay Area Postgres Meetup | Claire...
Why Postgres Why This Database Why Now | SF Bay Area Postgres Meetup | Claire...Why Postgres Why This Database Why Now | SF Bay Area Postgres Meetup | Claire...
Why Postgres Why This Database Why Now | SF Bay Area Postgres Meetup | Claire...
 
A story on Postgres index types | PostgresLondon 2019 | Louise Grandjonc
A story on Postgres index types | PostgresLondon 2019 | Louise GrandjoncA story on Postgres index types | PostgresLondon 2019 | Louise Grandjonc
A story on Postgres index types | PostgresLondon 2019 | Louise Grandjonc
 
Why developers need marketing now more than ever | GlueCon 2019 | Claire Gior...
Why developers need marketing now more than ever | GlueCon 2019 | Claire Gior...Why developers need marketing now more than ever | GlueCon 2019 | Claire Gior...
Why developers need marketing now more than ever | GlueCon 2019 | Claire Gior...
 
The Art of PostgreSQL | PostgreSQL Ukraine | Dimitri Fontaine
The Art of PostgreSQL | PostgreSQL Ukraine | Dimitri FontaineThe Art of PostgreSQL | PostgreSQL Ukraine | Dimitri Fontaine
The Art of PostgreSQL | PostgreSQL Ukraine | Dimitri Fontaine
 
When it all goes wrong (with Postgres) | RailsConf 2019 | Will Leinweber
When it all goes wrong (with Postgres) | RailsConf 2019 | Will LeinweberWhen it all goes wrong (with Postgres) | RailsConf 2019 | Will Leinweber
When it all goes wrong (with Postgres) | RailsConf 2019 | Will Leinweber
 
The Art of PostgreSQL | PostgreSQL Ukraine Meetup | Dimitri Fontaine
The Art of PostgreSQL | PostgreSQL Ukraine Meetup | Dimitri FontaineThe Art of PostgreSQL | PostgreSQL Ukraine Meetup | Dimitri Fontaine
The Art of PostgreSQL | PostgreSQL Ukraine Meetup | Dimitri Fontaine
 
How to write SQL queries | pgDay Paris 2019 | Dimitri Fontaine
How to write SQL queries | pgDay Paris 2019 | Dimitri FontaineHow to write SQL queries | pgDay Paris 2019 | Dimitri Fontaine
How to write SQL queries | pgDay Paris 2019 | Dimitri Fontaine
 
When it all Goes Wrong |Nordic PGDay 2019 | Will Leinweber
When it all Goes Wrong |Nordic PGDay 2019 | Will LeinweberWhen it all Goes Wrong |Nordic PGDay 2019 | Will Leinweber
When it all Goes Wrong |Nordic PGDay 2019 | Will Leinweber
 
Why PostgreSQL Why This Database Why Now | Nordic PGDay 2019 | Claire Giordano
Why PostgreSQL Why This Database Why Now | Nordic PGDay 2019 | Claire GiordanoWhy PostgreSQL Why This Database Why Now | Nordic PGDay 2019 | Claire Giordano
Why PostgreSQL Why This Database Why Now | Nordic PGDay 2019 | Claire Giordano
 
Scaling Multi-Tenant Applications Using the Django ORM & Postgres | PyCaribbe...
Scaling Multi-Tenant Applications Using the Django ORM & Postgres | PyCaribbe...Scaling Multi-Tenant Applications Using the Django ORM & Postgres | PyCaribbe...
Scaling Multi-Tenant Applications Using the Django ORM & Postgres | PyCaribbe...
 
Data Modeling, Normalization, and Denormalisation | FOSDEM '19 | Dimitri Font...
Data Modeling, Normalization, and Denormalisation | FOSDEM '19 | Dimitri Font...Data Modeling, Normalization, and Denormalisation | FOSDEM '19 | Dimitri Font...
Data Modeling, Normalization, and Denormalisation | FOSDEM '19 | Dimitri Font...
 
Five data models for sharding and which is right | PGConf.ASIA 2018 | Craig K...
Five data models for sharding and which is right | PGConf.ASIA 2018 | Craig K...Five data models for sharding and which is right | PGConf.ASIA 2018 | Craig K...
Five data models for sharding and which is right | PGConf.ASIA 2018 | Craig K...
 

Recently uploaded

Infrared simulation and processing on Nvidia platforms
Infrared simulation and processing on Nvidia platformsInfrared simulation and processing on Nvidia platforms
Infrared simulation and processing on Nvidia platformsYoss Cohen
 
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...Wes McKinney
 
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security ObservabilityGlenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security Observabilityitnewsafrica
 
A Framework for Development in the AI Age
A Framework for Development in the AI AgeA Framework for Development in the AI Age
A Framework for Development in the AI AgeCprime
 
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...itnewsafrica
 
4. Cobus Valentine- Cybersecurity Threats and Solutions for the Public Sector
4. Cobus Valentine- Cybersecurity Threats and Solutions for the Public Sector4. Cobus Valentine- Cybersecurity Threats and Solutions for the Public Sector
4. Cobus Valentine- Cybersecurity Threats and Solutions for the Public Sectoritnewsafrica
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsNathaniel Shimoni
 
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxGenerative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxfnnc6jmgwh
 
Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...
Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...
Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...Jeffrey Haguewood
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityIES VE
 
JET Technology Labs White Paper for Virtualized Security and Encryption Techn...
JET Technology Labs White Paper for Virtualized Security and Encryption Techn...JET Technology Labs White Paper for Virtualized Security and Encryption Techn...
JET Technology Labs White Paper for Virtualized Security and Encryption Techn...amber724300
 
Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...
Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...
Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...itnewsafrica
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Farhan Tariq
 
Microservices, Docker deploy and Microservices source code in C#
Microservices, Docker deploy and Microservices source code in C#Microservices, Docker deploy and Microservices source code in C#
Microservices, Docker deploy and Microservices source code in C#Karmanjay Verma
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsRavi Sanghani
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesKari Kakkonen
 
Kuma Meshes Part I - The basics - A tutorial
Kuma Meshes Part I - The basics - A tutorialKuma Meshes Part I - The basics - A tutorial
Kuma Meshes Part I - The basics - A tutorialJoão Esperancinha
 
React Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App FrameworkReact Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App FrameworkPixlogix Infotech
 
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS:  6 Ways to Automate Your Data IntegrationBridging Between CAD & GIS:  6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integrationmarketing932765
 

Recently uploaded (20)

Infrared simulation and processing on Nvidia platforms
Infrared simulation and processing on Nvidia platformsInfrared simulation and processing on Nvidia platforms
Infrared simulation and processing on Nvidia platforms
 
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
 
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security ObservabilityGlenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
 
A Framework for Development in the AI Age
A Framework for Development in the AI AgeA Framework for Development in the AI Age
A Framework for Development in the AI Age
 
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
 
4. Cobus Valentine- Cybersecurity Threats and Solutions for the Public Sector
4. Cobus Valentine- Cybersecurity Threats and Solutions for the Public Sector4. Cobus Valentine- Cybersecurity Threats and Solutions for the Public Sector
4. Cobus Valentine- Cybersecurity Threats and Solutions for the Public Sector
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directions
 
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxGenerative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
 
Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...
Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...
Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a reality
 
JET Technology Labs White Paper for Virtualized Security and Encryption Techn...
JET Technology Labs White Paper for Virtualized Security and Encryption Techn...JET Technology Labs White Paper for Virtualized Security and Encryption Techn...
JET Technology Labs White Paper for Virtualized Security and Encryption Techn...
 
Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...
Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...
Irene Moetsana-Moeng: Stakeholders in Cybersecurity: Collaborative Defence fo...
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...
 
Microservices, Docker deploy and Microservices source code in C#
Microservices, Docker deploy and Microservices source code in C#Microservices, Docker deploy and Microservices source code in C#
Microservices, Docker deploy and Microservices source code in C#
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and Insights
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examples
 
Kuma Meshes Part I - The basics - A tutorial
Kuma Meshes Part I - The basics - A tutorialKuma Meshes Part I - The basics - A tutorial
Kuma Meshes Part I - The basics - A tutorial
 
React Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App FrameworkReact Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App Framework
 
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS:  6 Ways to Automate Your Data IntegrationBridging Between CAD & GIS:  6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
 

Using Postgres and Citus for Lightning Fast Analytics, also ft. Rollups | Live Demo | Sai Srirampur

  • 1. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019 WITH FROM Thu 27 February at 10am PT Using Postgres & Citus for Lightning Fast Analytics PRESENTED BY: SAI SRIRAMPUR LIVE DEMO
  • 2. Sai Srirampur | Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019 Ask private questions in Q&A panel (mouseover at bottom to see Q&A icon) We plan to do 1-2 quick polls. Logistics X
  • 3. Sai Srirampur | PyConCA 2018 • Sai Srirampur a.k.a Sai • Engineer at Citus Data (now part of the Microsoft family!!) • Joined Citus to make it so developers never have to worry about scaling their database • Recently got married! • Follow me @saisrirampur @citusdata
  • 4. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019 Does this sound like you? Hitting resource limits with single-node Postgres, but don’t want to give up Postgres 1
  • 5. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019 Want to reduce dev costs by consolidating—& avoid separate stores for analytics (OLAP) & transactional workloads (OLTP) Does this sound like you? 2
  • 6. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019 Does this sound like you? Pre-aggregation or rollup pipeline lags and never catches up 3
  • 7. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
  • 8. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019 Why ! Postgres? TLDR; Open source Constraints Extensions PostGIS / Geospatial HLL, TopN, Citus Foreign data wrappers Rich SQL CTEs Window functions Full text search Datatypes JSONB
  • 9. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019 Q: Why Citus? A: Citus transforms Postgres into a distributed database
  • 10. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019 TLDR; on scaling out Postgres w/Citus 1. Distributes data across multiple nodes 2. More memory, cpu, disk + parallelization 3. Extension to Postgres (not a fork) DATABASE AS A SERVICE ENTERPRISE SOFTWARE OPEN SOURCE
  • 11. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 201911
  • 12. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019 Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
  • 13. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019 What is a rollup? Period Customer Country Site Hit Count SELECT… Pre-computed aggregates for a period and set of (group by) dimensions. Can be further filtered and aggregated to generate charts.
  • 14. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019 What are the benefits of rollups? • Fast (indexed) lookups of aggregates • Avoid expensive repeated computation • Rollups can be further aggregated • Rollups are compact, can be kept over longer periods
  • 15. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019 What is hll? • Approximation algorithm (“sketch” algorithm) • Estimates COUNT(DISTINCT)/cardinality of given data • Extension on postgres: hll • hll data type to store distinct values
  • 16. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019 Already provisioned a 4-node Citus database cluster for today’s demo / & regular Postgres on single node
  • 17. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019 Load data Create indexes (btree and GIN) Query patterns in analytics workload Rollup queries What I will show you in today’s analytics demo? Citus 4- node cluster Single node Postgres TOP BOTTOM Load data Create indexes (btree and GIN) Query patterns in analytics workload Rollup queries
  • 18. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019 Sai Srirampur | PyConCA 2018
  • 19. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019 1/ Parallelism 2/ Linear scale 3/ Freshness (real-time, concurrency) 4/ Both transactional && analytics
  • 20. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019 1/ Faster rollups - parallelism - no lag 2/ Increase granularity of period 3/ Store and query longer periods of data 4/ Extensions - hll, topn, pg_cron, pg_partman Enhance your rollup pipeline with
  • 21. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019 Sai Srirampur | PyConCA 2018 citusdata.com/customers/heap citusdata.com/customers/heap
  • 22. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 201922 citusdata.com/customers/algolia
  • 23. Scaling Postgres for Time Series Data with Citus | Nov 15 2018 | Marco Slot | Claire Giordano Using Postgres and Citus for Lightning Fast Analytics | February 2019 Min Wei of Microsoft
  • 24. Scaling Postgres for Time Series Data with Citus | Nov 15 2018 | Marco Slot | Claire Giordano Using Postgres and Citus for Lightning Fast Analytics | February 2019
  • 25. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 2019
  • 26. Live Demo of Using Postgres and Citus for Lightning Fast Analytics, also featuring Rollups | March 201926 Any Questions?? (And, resources) DOWNLOAD CITUS OPEN SOURCE: https://www.citusdata.com/download CREATE CITUS CLOUD DEV ACCOUNT: https://www.citusdata.com/product/cloud JOIN OUR PUBLIC SLACK: https://slack.citusdata.com/
  • 27. Live Demo of Citus Cloud | July 2018 www.citusdata.com @citusdata © 2019 Citus Data. All rights reserved. Sai Srirampur | @saisrirampur Thank you for your time