Successfully reported this slideshow.

Short Rotation Coppicing


Published on

A brief introduction into the costs and returns of short rotation coppicing (SRC) as well as the impacts on biodiversity. A group presentation as part of my MSc course at Keele University.

  • Be the first to comment

  • Be the first to like this

Short Rotation Coppicing

  1. 1. Short Rotation Coppicing<br />
  2. 2. SRC Processes<br />Approved Crops<br /><ul><li>Willow
  3. 3. Poplar
  4. 4. Ash
  5. 5. Alder
  6. 6. Hazel
  7. 7. Silver Birch
  8. 8. Sycamore
  9. 9. Sweet Chestnut
  10. 10. Lime</li></ul>Encourages Coppice Formation<br />10,000-17,000 stems ha-1 <br />Due to Stool Die-Off Because of Machine Harvesting<br />Broad Leaf Herbicide<br />Reduces Competition for Resources<br />
  11. 11. Costs and Yields<br />Energy Crops Scheme: DEFRA<br />50% Grant for planting and infrastructure<br />Minimum 3 ha planting over 3 years<br />Establishment Costs<br />£1800 ha-1<br />Deer/rabbit fencing<br />Spraying<br />Fencing<br />Yield<br />4-15 odt ha-1<br />£40-90 odt-1<br />£20 t-1 to harvest<br />£5-10 t-1 to dry<br />̴£360 ha-1 yr-1<br />Wheat ̴£1,000 ha-1 yr-1<br />Sheep ̴£848 ha-1 yr-1<br />
  12. 12. Phytoremediation<br />A process using plants to minimise the environmental impact of heavy metal contamination.<br />
  13. 13. Biodiversity - Flora<br /><ul><li> SRC not monoculture – variants and age differences within rows or across blocks create 3D effect
  14. 14. Use of IPM to maintain system:
  15. 15. Reduce weeds
  16. 16. Shade tolerant spp
  17. 17. N addition
  18. 18. Harvesting Dec-March </li></li></ul><li>Biodiversity - Fauna<br />SRC supports wide range of birds<br />More biodiverse than arable land, less so than woodland and hedgerows<br />30-40 bird species on average<br />Significant factors:<br />Age of stand – younger stands: migrant spp; older stands: breeding<br />Edges – more species found at edge of plantation, need for small oblong plantations and more intermittent open spaces<br />
  19. 19. Biodiversity - Fauna<br />Butterflies:<br /><ul><li>indicator of biodiversity as sensitive to change
  20. 20. More sppthan arable land eg. Satyrinae family 620% increase for Willow SRC
  21. 21. c.120 spp Willow, c.70 spp Poplar</li></ul>Beetles:<br />- 11.64 individuals per m² of Poplar SRC<br />Soil microarthropods:<br /><ul><li>Indicators of below-ground biodiversity
  22. 22. More abundant in older crops
  23. 23. Willow supports more than 728 arthropod spp.</li></li></ul><li>Biodiversity - Fauna<br />Mammals are habitat generalists – not an ideal location to find rare or endangered species<br />Importance of plantation edges<br />First year shoots encourage grazers eg. Deer<br />Lack of research into presence and behaviour of mammals and soil microarthropods in SRC<br />
  24. 24. Conclusions<br />SRC is not financially attractive, due to high price of grain and vegetable oil.<br />SRC can have extra benefits, remediation and soil structure.<br />Careful consideration for social factors such as rural regeneration and aesthetic quality of sites needed.<br />A more stable economic infrastructure is required for biomass from SRC to succeed in the UK<br />Careful management of SRC required to maintain productivity and biodiversity – use of IPM, landscaping.<br />More research required into behaviour and abundance of flora at SRC sites.<br />
  25. 25. References<br />Andersen, R. Towers, W. Smith, P., 2005. Assessing the potential for biomass energy to contribute to Scotland’s renewable energy needs. Journal of Biomass and Bioenergy. Vol. 29, pp. 73-82.<br />Aylott, M. Casella,E. Tubby, I. Street, N. Smith, P. Taylor, G., 2008. Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. Journal of New Phytologist. Vol. 179, Issue2.<br />Broek, R. Teeuwsisse, S. Healion, K. Kent, T. Wijk, A. Faaij, A. Turkenburg, W., 2001. Potentials for electricity production form wood in Ireland. Journal of Energy. Vol. 26, pp. 991-1013.<br />French, C. Dickinson, N. Putwain, P., 2006. Woody biomass pytoremediation of contaminated brownfield land. Journal of Environmental Pollution. Vol. 121, pp. 387-395.<br />Haughton, A. J., Bond, A. J., Lovett, A. A., Dockerty, T., Sünnenberg, G., Clark, S. J., Bohan, D. A., Sage, R. B., Mallott, M. D., Mallott, V. E., Cunningham, M. D., Riche, A. B., Shield, I. F., Finch, J. W., Turner, M. M and A. Karp (2009) ‘A Novel, Integrated Approach to Assessing Social, Economic and Environmental Implications of Changing Rural Land-Use: A Case Study of Perennial Biomass Crops’, Journal of Applied Ecology, 46, pp. 315- 322.<br />Rowe, R. L., Street, N. R. and G. Taylor (2009) ‘Identifying Potential Environmental Impacts of Large-Scale Deployment of Dedicated Bioenergy Crops in the UK’, Renewable and Sustainable Energy Reviews, 13, pp. 271- 290.<br />Haughton, A. Bond, A. Lovett, A. Dockerty, T. Sünnenburg, G. Clark, S. Bohan, D. Sage, R. Mallot, M. Mallot, V. Cunningham, M. Riche, A. Shield, I. Finch, J. Turner, M. Karp, A., (2009). A novel, integrated approach to assessing social, economic and environmental implications of changing rural land-use: A case study of perennial biomass crops. Journal of Applied Ecology. Vol. 46, pp. 315-322.<br />Heaton, R. Randerson, P. Slater, F., 1999. The economics of growing short rotation coppice in the uplands of mid-Wales and an economic comparison with sheep production. Journal of Biomass and bioenergy. Vol. 17, pp. 59-71.<br />Natural England, 2009. [online] Energy crops scheme: Establishment grants handbook 3rd edition. Available at: [accessed 19 February 2011].<br />NNFCC, 2008. [online] Addressing the land use issues for non-food crops, in response to increasing fuel and energy generation possibilities. Available at: [accessed 23 February 2011].<br />Sage, R., Cunningham, M. and N. Boatman (2006) ‘Birds in Willow Short-Rotation Coppice Compared to Other Arable Crops in Central England and a Review of Bird Census Data from Energy Crops in the UK’, Ibis, 148, pp. 184- 197.<br />Sage, R. B. and K. Tucker (1998) Integrated Crop Management of SRC Plantation to Maximise Crop Value, Wildlife Benefits and Other Added Value Opportunities. DTI, Unknown further publisher details.<br />Schulz, U., Brauner, O. and H. Gruß (2009) ‘Animal Diversity on Short-Rotation Coppices- a Review’, LandbauforschungVolkenrode, 59 (3), pp. 171- 182.<br />Vassilev, A. Schwitzguébel, J. Thewys, T. Lelie, D. Vangronsfeld, J., 2004. The use of plants for remediation of metal-contaminated soils. The scientific world. Vol. 4, pp. 9-34.<br />Volk, T A., Verwijst, T., Tharakan, P. J., Abrahamson, L. P. and E. H. White (2004) ‘Growing Fuel: A Sustainability Assessment of Willow Biomass Crops’, Frontiers in Ecology and the Environment, 2 (8), pp. 411- 18.<br />