Successfully reported this slideshow.
Your SlideShare is downloading. ×

Overview of Advanced Thermal Materials

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Loading in …3
×

Check these out next

1 of 46 Ad

More Related Content

Slideshows for you (19)

Similar to Overview of Advanced Thermal Materials (20)

Advertisement

Recently uploaded (20)

Overview of Advanced Thermal Materials

  1. 1. OVERVIEW OF ADVANCED THERMAL MATERIALS Carl Zweben, PhD Life Fellow ASME Fellow SAMPE and ASM Associate Fellow, AIAA Advanced Thermal Materials Consultant 62 Arlington Road Devon, PA 19333-1538 Phone: 610-688-1772 E-mail: c.h.zweben@usa.net http://sites.google.com/site/zwebenconsulting Copyright Carl Zweben 2010 1
  2. 2. The information in these slides is part of a short course on composite materials that is presented publicly and in-house Contact author for information Copyright Carl Zweben 2010 2
  3. 3. OUTLINE • Introduction • Semiconductors, ceramic substrates and traditional thermal materials • Advanced thermal materials • Applications • Summary and conclusions • Appendix (terminology and abbreviations) Copyright Carl Zweben 2010 3
  4. 4. INTRODUCTION Copyright Carl Zweben 2010 4
  5. 5. INTRODUCTION • Critical thermal management problems: – Heat dissipation – Thermal stresses cause • Warping, fracture, fatigue, solder creep • Primarily due to CTE mismatch • An issue for all cooling methods • Problems similar for – Microprocessors, power modules, RF – Diode lasers – Light-emitting diodes (LEDs) – Plasma and LCD displays – Photovoltaics – Thermoelectric coolers (TECs) Copyright Carl Zweben 2010 5
  6. 6. INTRODUCTION (cont) • Microelectronic thermal problems well known – Xbox 360 $1 billion “Red Ring of Death” failure widely cited as thermal issue – Nvidia $150-200 million GPU thermal problem – “Burned groin blamed on laptop” (BBC 11//02) • Solder thermal fatigue limits laser pulsing • Higher process temperatures for lead-free solders – Increased thermal stresses & warping • Higher ambient temperatures – E.g. automotive under hood Copyright Carl Zweben 2010 6
  7. 7. INTRODUCTION (cont) • Weight (mass) important – Portable systems – Vibration and shock loads • Volume and thickness decreasing • Cooling significant part of total cost of ownership – System – Building, data center • System cooling power increases building cooling load • Low-CTE “Thermount” PCB withdrawn from market in 2006 – No current thin-ply replacement Copyright Carl Zweben 2010 7
  8. 8. INTRODUCTION (cont) • Traditional thermal materials inadequate – Decades old: mid 20th Century – Impose major design limitations (see later) • In response to critical needs, an increasing number of advanced materials have been developed • Many with ultrahigh-thermal-conductivity – k = 400 to 1700 W/m-K – Low CTEs – Low densities – R&D to high-volume production Copyright Carl Zweben 2010 8
  9. 9. INTRODUCTION (cont) • Can now match CTEs of chips, lids, heat sinks, and PCBs – Reduces thermal stresses and warping – Possibly eliminates need for underfill – Enables use of hard solder attach • Low thermal resistance – Low-CTE solders under development • Thermally conductive PCBs provide heat path Copyright Carl Zweben 2010 9
  10. 10. CTE MISMATCH CAUSES THERMAL STRESSES Copyright Carl Zweben 2010 10
  11. 11. PACKAGING LEVELS Source: USAF (modified) Copyright Carl Zweben 2010 11
  12. 12. SEMICONDUCTORS, CERAMIC SUBSTRATES AND TRADITIONAL THERMAL MATERIALS Copyright Carl Zweben 2010 12
  13. 13. SEMICONDUCTOR AND CERAMIC SUBSTRATE PROPERTIES MATERIAL CTE (ppm/K) Silicon 2.5-4.1 GaAs 5.8-6.9 GaP 5.9 InP 4.5-4.8 SiC 4.2-4.9 Alumina (96%) 6.0-7.1 AlN 3.5-5.7 BeO 6-9 LTCC 5.8 CTE RANGE ~ 2 – 7 ppm/K Copyright Carl Zweben 2010 13
  14. 14. TRADITIONAL THERMAL AND PACKAGING MATERIALS k CTE Specific k/SG MATERIAL (W/m-K) (ppm/K) Gravity (W/m-K) Copper 400 17 8.9 45 Aluminum 218 23 2.7 81 “Kovar” 17 5.9 8.3 2 Alloy 42 10.5 5.3 8.1 1.3 W/Cu (85/15) 167 6.5 17 10 Mo/Cu (85/15) 184 7.0 10 18 Cu-Invar-Cu* 172* 6.7* 8.4 20 Cu-Mo-Cu* 182* 6.0* 9.9 18 E-glass/epoxy 0.3* 12-24* 1.6-1.9 0.2 Epoxy 0.2 45-65 1.3 0.2 *Inplane isotropic (x,y) Copyright Carl Zweben 2010 14
  15. 15. WHAT’S WRONG WITH TRADITIONAL THERMAL MATERIALS? • Copper and aluminum – High CTEs • Thermal stresses, warping • Require compliant polymeric and solder thermal interface materials (TIMs) – Higher thermal conductivities desirable – Copper has high density • What’s wrong with compliant polymeric TIMs? – Pump-out and dry-out for greases – High thermal resistance for most – Increasingly, the key contributor to total thermal resistance Copyright Carl Zweben 2010 15
  16. 16. WHAT’S WRONG WITH TRADITIONAL THERMAL MATERIALS? (cont) • What’s wrong with compliant solders? – E.g. indium alloys – Process problems (voiding, poor wetting) – Poor fatigue life (low yield stress) – Creep – Intermetallics – Corrosion – Electromigration – Relatively low melting point – Cost higher than many solders DIRECT ATTACH WITH HARD SOLDERS DESIRABLE Copyright Carl Zweben 2010 16
  17. 17. WHAT’S WRONG WITH TRADITIONAL THERMAL MATERIALS? (cont) • Low-CTE materials seriously deficient – E.g. alloy 42, Kovar, tungsten/copper, molybdenum/copper, copper-Invar-copper, etc. – Conductivities < aluminum (200 W/m-K) – High densities – High cost • CVD diamond – High thermal conductivity – Low CTE – Expensive – Thin flat plates only (i.e. CVD diamond films) Copyright Carl Zweben 2010 17
  18. 18. ADVANCED THERMAL MATERIALS Copyright Carl Zweben 2010 18
  19. 19. NEW THERMAL MANAGEMENT MATERIALS • Many advanced materials – Various stages of development – R&D to large scale production – New ones continuously emerging • Monolithic materials – Primarily carbonaceous (graphitic) • Composites – Polymer matrix – Metal matrix – Metal/metal alloys-composites – Carbon matrix (e.g. carbon/carbon) – Ceramic matrix Copyright Carl Zweben 2010 19
  20. 20. NEW THERMAL MANAGEMENT MATERIALS (cont) • Al/SiC first, and most successful advanced thermal material – First used by speaker and colleagues at GE for electronics and optoelectronics in early 1980s – New processes developed – Millions of piece parts produced annually – Part cost dropped by orders of magnitude – Microprocessor lids now $1-5 in high volume – CVD diamond and highly-oriented pyrolytic graphite inserts increase heat spreading • “Hybrid materials” approach Copyright Carl Zweben 2010 20
  21. 21. SiC-PARTICLE/ALUMINUM (Al/SiC) SUPPLIERS v/o k CTE Specific Supplier (%) (W/m-K) (ppm/K) Gravity Ametek 68 220 7.5 3.03 CPS 63 200 8.0 3.01 DWA 55 200 8.8 3.00 Denka - 200 7.5 2.96 MC-21 20-45 150-180 10-16 2.7-2.9 PCC-AFT* 70 175 7 3.01 Sumitomo - 150-200 8-15 2.60-2.78 TTC - 165-255 4.8-16.2 2.77-3.10 *Purchased by Rogers Corporation Copyright Carl Zweben 2010 21
  22. 22. ADVANCED MATERIALS PAYOFFS • Lower junction temperatures • Reduced thermal stresses and warpage • Simplified thermal design – Possible elimination of fans, heat pipes, TECs, liquid cooling, refrigeration • Increased reliability • Improved performance • Weight savings up to 90% • Size reductions up to 65% • Dimensional stability • Improved optical alignment Copyright Carl Zweben 2010 22
  23. 23. ADVANCED MATERIALS PAYOFFS (cont) • Possible elimination of underfill • Increased manufacturing yield • Reduced electromagnetic emission • Reduced power consumption • Longer battery life • Reduced number of devices (e.g. power modules, LEDs) • Low cost potential – Component – System – Total cost of ownership (TCO) Copyright Carl Zweben 2010 23
  24. 24. DISADVANTAGES OF SOME ADVANCED MATERIALS • Higher cost (low volumes, reinforcements) • Limited service experience • Low fracture toughness • Possible hysteresis • Ceramic materials hard to machine • Some particulate materials hard to metallize • Surface roughness and flatness • Edge sharpness (laser diodes) • Direct attach during infiltration complicates rework • Galvanic corrosion potential • Porosity (not hermetic) Copyright Carl Zweben 2010 24
  25. 25. COMPOSITE MATERIAL REINFORCEMENTS Discontinuous Fibers, Continuous Fibers Whiskers Particles Fabrics, Braids, etc. Copyright Carl Zweben 2010 25
  26. 26. CTE OF SILICON-CARBIDE-PARTICLE-REINFORCED ALUMINUM (Al/SiC) vs PARTICLE VOLUME FRACTION 25 Aluminum COEFFICIENT OF THERMAL Powder Metallurgy EXPANSION (ppm/K) 20 Infiltration Copper E-glass PCB 15 Beryllium 10 NEW MATERIAL Titanium, Steel Alumina 5 Silicon 0 0 20 40 60 80 100 PARTICLE VOLUME FRACTION (%) Copyright Carl Zweben 2010 26
  27. 27. THERMAL CONDUCTIVITY vs CTE FOR PACKAGING MATERIALS 1200 Si, GaAs, Silica, Alumina, Beryllia, THERMAL CONDUCTIVITY (W/mK) Aluminum Nitride, LTCC 600 HOPG (1700) 500 Diamond-Particle-Reinforced Metals and Ceramics C/Cu Silver 400 C/C Copper SiC/Cu 300 C/Ep C/Al Aluminum 200 Cu/W SiC/Al (Al/SiC) Si-Al 100 Invar Kovar E-glass PCB 0 -5 0 5 10 15 20 25 COEFFICIENT OF THERMAL EXPANSION (ppm/K) Copyright Carl Zweben 2010 27
  28. 28. SPECIFIC PROPERTIES • Specific property is absolute property divided by density • Figure of merit when weight is important • If specific gravity (S.G.) is used for density, absolute and specific properties have same units, e.g. – Thermal conductivity, k = W/m-K – Specific thermal conductivity, k/S.G = W/m-K Copyright Carl Zweben 2010 28
  29. 29. SPECIFIC THERM. COND. vs CTE FOR PACKAGING MATERIALS 670 350 SPECIFIC THERMAL CONDUCTIVITY Si, GaAs, Silica, Alumina, Beryllia, Aluminum Nitride, LTCC HOPG (740) 300 Diamond-Particle-Reinforced Metals and Ceramics 250 C/C (W/mK) 200 C/Ep SiC/Al (Al/SiC) 150 C/Al Aluminum 100 C/Cu Si-Al 50 Copper Invar Kovar Cu/W 0 -5 0 5 10 15 20 25 COEFFICIENT OF THERMAL EXPANSION (ppm/K) Copyright Carl Zweben 2010 29
  30. 30. MODERATE-THERMAL-CONDUCTIVITY MATERIALS (k < 300) k CTE Specific k/SG MATERIAL (W/m-K) (ppm/K) Gravity (W/m-K) Copper 400 17 8.9 45 Industrial Gr 95 7.9 1.8 53 Carbon Foam* 135-145 -1 0.6-0.9 220-270 Disc. CF/Ep* 20-290 4-7 1.6-1.8 12-160 SiC/Al (Al/SiC) 170-255 4.8-16.2 2.9-3.0 57-85 Cont. CF/Al* 218-290 0-16 2.3-2.6 84-126 Disc. CF/Al* 185 6.0 2.5 74 Industrial Gr/Cu 175 8.7 3.1 56 Beryllia/Be 240 6.1 2.6 92 Be/Al 210 13.9 2.1 100 Silver/Invar 153 6.5 8.8 17 Si-Al 126-160 6.5-14 2.5-2.6 49-63 * Inplane isotropic values Copyright Carl Zweben 2010 30
  31. 31. HIGH-THERMAL-CONDUCTIVITY MATERIALS (300 < k < 400) k CTE Specific k/SG MATERIAL (W/mK) (ppm/K) Gravity (W/mK) Copper 400 17 8.9 45 Natural Graphite/Ep* 370 -2.4 1.9 190 Cont. CF/Ep* 330 -1 1.8 183 Disc. CF/Cu* 300 6.5-9.5 6.8 44 Carbon/carbon* 350 -1.0 1.9 210 (363) ------------------------------------------------------------------------------------------ Graphite Foam/Cu 342** 7.4 5.7 60 SiC/Cu 320 7-10.9 6.6 48 Materials below line are experimental * Inplane isotropic values ** k(z) Copyright Carl Zweben 2010 31
  32. 32. ULTRAHIGH-THERMAL-CONDUCTIVITY MATERIALS (k > 400) – Part 1 k CTE Specific k/SG MATERIAL (W/m-K) (ppm/K) Gravity (W/m-K) Copper 400 17 8.9 45 CVD Diamond 500-2200** 1-2 3.5 143-629 HOPG* 1500-1700 -1 2.3 650-740 Natural Graphite* 140-500+ -0.4 1.1-1.9 127-263 ------------------------------------------------------------------------------------------ Cont. CF/Cu* 400-420 0-16 5.3-8.2 49-79 Gr Flake/Al* 400-600 4.5-5.0 2.3 174-260 GR particle/Al* 650-700 4-7 2.3 283-304 Materials below line are experimental * Inplane isotropic values ** k(z) – somewhat anisotropic Copyright Carl Zweben 2010 32
  33. 33. ULTRAHIGH-THERMAL-CONDUCTIVITY MATERIALS (k > 400) – Part 2 k CTE Specific k/SG MATERIAL (W/m-K) (ppm/K) Gravity (W/m-K) Copper 400 17 8.9 45 Diamond/Al 325-600 7-9 3-4 93-171 Diamond/Cu 400-1200 5-8 5.5-7 62-185 Diamond/Co >600 3.0 4.1 >146 Diamond/Ag 550-650 5-8 6-7 85-100 Diamond/SiC 600-680 1.8 3.3 182-206 ------------------------------------------------------------------------------------------ Diamond/Si 525 4.5 - - Diamond/Mg 575 5.5 - - Diamond+SiC/Al 575 5 - - Materials below line are experimental Copyright Carl Zweben 2010 33
  34. 34. EXPERIMENTAL LOW-CTE COMPOSITE SOLDER Wt % Mo CTE Thermal (ppm/K) Conductivity (W/m-K) 0 21 55 20 15 68 40 8 76 60 5.2 97 100 5.1 137 Matrix: Sn96.5Ag3.5 Lewis, Ingham and Laughlin, Cookson Copyright Carl Zweben 2010 34
  35. 35. APPLICATIONS Copyright Carl Zweben 2010 35
  36. 36. APPLICATIONS • Microelectronic applications – CPU, RF, Power, etc. • Optoelectronic applications – LEDs – Diode Lasers – Displays – Detector/sensors – Photovoltaics – Thermoelectric coolers • Thermally conductive, low-CTE printed circuit boards • Advanced thermal interface materials Copyright Carl Zweben 2010 36
  37. 37. THE FIRST SILICON-CARBIDE-PARTICLE- REINFORCED (AL/SiC) MMC MICROWAVE PACKAGE Source: GE Copyright Carl Zweben 2010 37
  38. 38. SUMMARY AND CONCLUSIONS Copyright Carl Zweben 2010 38
  39. 39. SUMMARY AND CONCLUSIONS • Thermal management now critical problem for microelectronics and optoelectronics • Traditional thermal materials inadequate – Mid-20th century • Low-CTE, low-density materials with thermal conductivities up to 1700 W/m-K available • Can now match CTEs of chips, lids, heat sinks, and PCBs – Reduces thermal stresses and warping – Possibly eliminates need for underfill – Enables use of hard solder attach • Low thermal resistance Copyright Carl Zweben 2010 39
  40. 40. SUMMARY AND CONCLUSIONS (cont) • Several advanced materials well established – SiC particle/aluminum – Silicon-aluminum – Carbon fiber/polymer – Natural graphite – Pyrolytic graphite sheet – Highly-oriented pyrolytic graphite • Diamond composites used in production microelectronic and optoelectronic systems • Short (2-3 year) cycle from introduction to production demonstrated • Applications increasing steadily Copyright Carl Zweben 2010 40
  41. 41. WE ARE THE INFANCY OF A PACKAGING MATERIALS REVOLUTION Copyright Carl Zweben 2010 41
  42. 42. APPENDIX Copyright Carl Zweben 2010 42
  43. 43. TERMINOLOGY • Homogeneous – Properties constant throughout material • Heterogeneous – Properties vary throughout material – E.g. different in matrix and reinforcement – Composites always heterogeneous • Isotropic – Properties the same in every direction • Anisotropic – Properties vary with direction • Inplane isotropic (transversely isotropic) – Properties the same for every direction in a plane (different perpendicular to the plane) Copyright Carl Zweben 2010 43
  44. 44. ABBREVIATIONS • C: carbon • CAMC: carbon matrix composite • CCC: carbon/carbon composite • C/C: carbon/carbon • CF - carbon fiber • CMC: ceramic matrix composite • Cond: conductivity • Cont: continuous • CTE: coefficient of thermal expansion • Dens: density • Disc: discontinuous Copyright Carl Zweben 2010 44
  45. 45. ABBREVIATIONS (cont) • Elect: Electrical • Ep: epoxy • HOPG: highly oriented pyrolytic graphite • Gr: graphite • MMC: metal matrix composite • PAN: polyacrylonitrile • PCB: printed circuit board • Pitch: carbonaceous petroleum or coal byproduct • PMC: polymer matrix composite • LTCC: low-temperature cofired ceramic • Mod: modulus Copyright Carl Zweben 2010 45
  46. 46. ABBREVIATIONS (cont) • PGS: pyrolytic graphite sheet • SG, S.G.: specific gravity • SiCp: Silicon carbide particle • TEC: thermoelectric cooler • Therm: thermal • UHM: ultrahigh modulus • UHS: ultrahigh strength Copyright Carl Zweben 2010 46

×