Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

3D Display Technology: VDC-Whitepaper

16 views

Published on

Content:
Basics
Stereoscopic Displays
Autostereoscopic Systems
Volumetric Displays
Further Trends

Published in: Technology
  • Be the first to comment

3D Display Technology: VDC-Whitepaper

  1. 1. Whitepaper 3D Display Technology Active-, Passive-, Autostereo, Volumetric Displays © Competence Centre for Virtual Reality and Cooperative Engineering w. V. – Virtual Dimension Center (VDC) Dr.-Ing. Dipl.-Kfm. Christoph Runde Virtual Dimension Center (VDC) Fellbach Auberlenstr. 13 70736 Fellbach www.vdc-fellbach.de Active-, Passive-, Autostereo, Volumetric Displays
  2. 2. VDC-technology screening: 3D display technology Basics Stereoscopic Displays Autostereoscopic Systems Volumetric Displays Further Trends xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends
  3. 3. Basics: Terms and motivation 3D visualization = spatial vision Providing two, slightly offset perspectives for the viewer Possibly head tracking Thereby: xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends Thereby: Brain assigns spatialities better Better feeling for the near and far Building a mental, spatial environment model is easier Support for 3D interaction (space must be known for this)
  4. 4. Whitepaper 3D Display Technology Source: Runde, C.: Konzeption und Einführung von Virtueller Realität als Komponente der Digitalen Fabrik in Industrieunternehmen. Zugl.: Stuttgart, Univ., Diss., 2007, IPA-IAO Forschung und Praxis, 455. Heimsheim: Jost-Jetter Verlag, 2007 Graphical depth criteria What does the brain calculate/ work with? xxx: xxx www.vdc-fellbach.de info@vdc.fellbach.de Tel.: +49 (0) 711 58 53 09-0 www.vdc-fellbach.de info@vdc.fellbach.de Tel.: +49 (0) 711 58 53 09-0 www.vdc-fellbach.de info@vdc-fellbach.de Tel.: +49 (0) 711 58 53 09-0 © Kompetenzzentrum Virtuelle Realität und Kooperatives Engineering w. V. – Virtual Dimension Center VDC 4 Content: Basics Projection systems Types of construction projection systems Display systems Autostereosc. systems Volumetr. displays Further trends
  5. 5. Basics: Stereo solutions Two views are generated These two views have to be transported separately to the two eyes Note: natural eye distance (about 6.5cm) allows reasonable stereoscopic vision at a distance of up to 15m Greater distance: increase parallax Quality criteria, amongst others: xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends Quality criteria, amongst others: oOptical crosstalk (eye receives false signal): ghosting oOverall brightness oUniformity of brightness distribution (hot spots) oFocus (tinting) oContrast, dynamics
  6. 6. Stereoscopic Displays xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends
  7. 7. Passive-stereo displays Polarization filter glasses Basic technologies Polarizing filter screens (light wave polarization, passive stereo) Image columns or lines alternately polarized xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends JVC GD-463D10 3D monitor screen ⊕ Light glasses ⊕ No sync necessary ⊕ No flickering Θ Half resolution
  8. 8. Planar® display Uses two screens Pane lets through front display and mirrors upper Resolution 1920 x 1200x ⊕ No reduction of resolution because of Polarization filter glasses xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends ⊕ No reduction of resolution because of stereoscopy ⊕ However steady image Θ Space requirement Θ Price Planar SD2620W-351 Possibility to test at:
  9. 9. Active-stereo displays Basic technologies Shutter technology (LCD, active- stereo) Display: at least 120Hz refresh rate ⊕ Depending on the system, very low crosstalk Shutter glasses Nvidia IR emitter xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends crosstalk Θ Heavier glasses Θ Active glasses: power supply Θ Polarized glasses Θ Mostly an emitter for the synchronization of image-glasses is necessary Θ Loss of brightness Θ Possibly flickering today: DLP, LCD example: Samsung SyncMaster 2233RZ LCD In the past: tube monitor
  10. 10. Active-stereo: Plasm screens Light generation by phosphors encouraged by UV radiation from plasm discharges The discharge takes place in cells located between two panes of glass, which dƵďĞ > WůĂƐŵ н ůŽǁ ĐŽƐƚƐ н ŚŝŐŚ ƌĞƉĞƚŝƚŝŽŶ ƌĂƚĞ ƉŽƐƐŝďůĞ н ĨůĞdžŝďůĞ ĐŚŽŝĐĞ ŽĨ ƉĂƌĂŵĞƚĞƌƐ н ĂƉƉůŝĐĂďůĞ ĂƐ ǀĞĐƚŽƌ ĚĞǀŝĐĞ Ͳ ,ŝŐŚ ƐƉĂĐĞ ƌĞƋƵŝƌĞŵĞŶƚ Ͳ DĂŐŶĞƚŝĐ ĨŝĞůĚƐ ĐƌĞĂƚĞ н ůŽǁ ƐƉĂĐĞ ƌĞƋƵŝƌĞŵĞŶƚ н Žǁ ĚĞŵĂŶĚ ŽĨ ǀŽůƚĂŐĞ ;ǀĞƌƐĂƚŝůĞͿ н ůŽǁ ƉŽǁĞƌ ĐŽŶƐƵŵƉƚŝŽŶ н ůŽǁ ǁĞŝŐŚƚ н ŶŽ ƌĂĚŝĂƚŝŽŶ ĞŵŝƐƐŝŽŶƐ Ͳ ŝŵŝƚĞĚ ƉĞƌƐƉĞĐƚŝǀĞƐ Ͳ Žǁ ĐŽŶƚƌĂƐƚ ƌĂƚŝŽ Ͳ ůŽǁ ƌĞƉĞƚŝƚŝŽŶ ƌĂƚĞͬ ůŽŶŐ ƌĞƐƉŽŶƐĞ ƚŝŵĞ н ůŽǁ ƐƉĂĐĞ ƌĞƋƵŝƌĞŵĞŶƚ н ůĂƌŐĞ ƐĐƌĞĞŶƐ ƉŽƐƐŝďůĞ н ŚŝŐŚ ůŝŐŚƚ ŽƵƚƉƵƚ͕ ĐŽŶƚƌĂƐƚ ƌĂƚŝŽ ĂŶĚ ůĂƌŐĞ ĐŽůŽƌ ƐƉĞĐƚƌƵŵ Ͳ ŚŝŐŚ ŚĞĂƚ ŽƵƚƉƵƚ Ͳ EŽŝƐĞ ŐĞŶĞƌĂƚŝŽŶ ǁŚĞŶ ƵƐŝŶŐ ƚŚĞ ǀĞŶƚŝůĂƚŽƌ Ͳ ůŽǁ ƌĞƐŽůƵƚŝŽŶ Ͳ ĞŶŐƚŚ ĂĐĐĞƉƚĂŶĐĞ ŽĨ ůŝŐŚƚ ŽƵƚƉƵƚ ĂŶĚ ĐŽůŽƌ ĚŝƐƚŽƌƚŝŽŶƐ Comparison technology tube, LCD, plasm (source: FZ Jülich) xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends two panes of glass, which are filled with neon, xenon and possibly helium, after electrical ignition of the gas for changing the state of aggregation in plasma Different levels of brightness are achieved by the number of ignitions Increase in brightness with active stereo Schematic illustration of the structure of a plasm screen (source: Wikipedia) Ͳ DĂŐŶĞƚŝĐ ĨŝĞůĚƐ ĐƌĞĂƚĞ ŝŶƚĞƌĨĞƌĞŶĐĞ ĨŝĞůĚƐ Ͳ ůŝĐŬĞƌŝŶŐ ƌĞƐƉŽŶƐĞ ƚŝŵĞ Ͳ ĂĐŬŐƌŽƵŶĚ ůŝŐŚƚŝŶŐ ĐŽůŽƌ ĚŝƐƚŽƌƚŝŽŶƐ Ͳ ƵƌŶͲŝŶ ƉŽƐƐŝďůĞ
  11. 11. Active-stereo: Plasm screens Panasonic: 85 inches and 103 inches 3D plasma screens on offer, 150 inches as a prototype xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends Possibility to test at:
  12. 12. Separated displays for each eye ⊕ Full channel separation right-left ⊕ Includes sense of orientation in case of using head tracking (supports mental spatial image) Θ Resolution is usually lower NVIS Virtual Binokular SV xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends Θ Resolution is usually lower Θ High weight Θ Isolation available Θ Viewing angle usually small NVIS nVisor SX111 NVIS Virtual Binokular SV
  13. 13. Autostereoscopic Systems xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends
  14. 14. Autostereo: Lenticular Basic technologies Direction multiplex method: lenticular systems ⊕ No glasses necessary ⊕ No calibration or similar Tridelity screen xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends ⊕ No calibration or similar ⊕ Multi-user capable Θ Fixed, optimal field of vision Θ Optimal viewing distance determined Θ Special software Θ Decreased resolution Schematic illustration of the procedure (source: www.3d-forums.com)
  15. 15. Autostereo: Parallax barrier Basic technologies Direction multiplex method: parallax barrier systems ⊕ No glasses necessary ⊕ Optimal viewing position is adjusted See-real screen Samsung SCH B710 xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends ⊕ Optimal viewing position is adjusted dynamically (face recognition) Θ Single-user system Θ Decreased resolution Schematic illustration of the procedure (source: www.3d-forums.com)
  16. 16. Autostereo: Holography Basic technology Direction multiplex method: electric holography The signal wave of the object is superimposed with a coherent reference wave. The Reading a hologram (Source: Holographie in Wissenschaft und Technik Karsten Buse, Elisabeth Soergel) Writing a hologram (Source: Holographie in Wissenschaft und Technik Karsten Buse, Elisabeth Soergel) xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends coherent reference wave. The resulting interference pattern is recorded. Illumination with the reference wave reconstructs the signal wave by diffraction Source: Slinger, C.; Cameron, C.; Stanley, M.: Computer-Generated Holography as a Generic Display Technology. In: IEEE Computer 38 (2005), Nr. 8, S. 46-53 HoloVizio 720RC (Source: http://www.holografika.com)
  17. 17. Technologies Toshiba: use of digital lens raster from the company AU Optronics Additional monochrome TN () panel Additional convex shaped layer of so-called reactive mesogens (RM) (UV light-cured liquid crystal: refractive index varies with polarization of incident light) xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends GRIN or ELC lenses (LG displays) - see ct 2011 Projection on fog, steam ⊕ Scalable Θ No stereo-3D
  18. 18. Volumetric Displays xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends
  19. 19. Volumetric displays Presentation of computer graphics in 3D space, not on the surface ⊕ No glasses necessary ⊕ Depth criterion motion parallax without tracking Pure Depth 12.1 RGB BLU xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends tracking ⊕ Depth criterion accommodation ⊕ Multi-user capable ⊕ Partly scalable Θ Almost always partially transparent Θ Limited color reproduction Θ Low resolution Θ Further disadvantages depending on the system type
  20. 20. Volumetric displays General technologies Laser projection on rotating surface ⊕ Compact, mobile Θ Elaborate, color reproduction LED voxel Image: project group„Felix3D- Display“ xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends LED voxel ⊕ Compact, cheap Θ Resolution, image quality Fluorescence excitation in the solid (in research) Scheme SolidFelix Source: Project group „Felix3D-Display“ LED Voxel Display (Source: David Wyatt)
  21. 21. Volumetric displays General technologies Multi-layer ⊕ Compact Θ Partially transparent Θ Low resolution in z-axis Scheme multi-layer display (Source: Lightspace Technologies) xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends Projection on fog, steam ⊕ Scalable Θ No stereo-3D Scheme multi-layer display (Source: Lightspace Technologies) Projection in steam (Source: Fogscreen)
  22. 22. Further Trends xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends
  23. 23. Transparent OLEDs Organic LED displays Development by Samsung Prototype status Use is interesting for Augmented Reality (AR) and Head Mounted xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends (AR) and Head Mounted Displays (HMD) Transparent OLED display by Samsung
  24. 24. HDR displays Uniform background lighting: brightest white and darkest black brighter Only shifting, not improving the dynamics HDR (High Dynamic Range): Very strong effect, especially with monochrome images xxx: xxxContent: Basics Stereoscopic systems Autostereosc. systems Volumetric displays Further trends HDR (High Dynamic Range): prototypes since 2004 HDR displays increase brightness values by backlighting Thereby, the display is not illuminated surface-wide with the same brightness from behind, but is partially illuminated brighter and darker Contrast range of up to 200.000:1 Sim2 HDR 47 Background with color support
  25. 25. Thank you very much for your interest! You are interested in this topic and you are looking for contact persons/ implementation partners? Please contact us. © Competence Centre for Virtual Reality and Cooperative Engineering w. V. – Virtual Dimension Center (VDC) Virtual Dimension Center (VDC) Fellbach Auberlenstraße 13 70736 Fellbach www.vdc-fellbach.de

×