Triangles<br />By Cody Chesney<br />
Polygons<br />Geometric Shape<br />Closed figure<br />Three sides<br />
Angles<br />Two types<br />First – Interior Angles<br />Always three<br />Total 180°<br />
Angles (cont.)<br />Second – Exterior Angles<br />Along line from interior angle<br />Exterior + Interior = 180°<br />Sum ...
Types of Triangles<br />By sides:<br />Scalene Triangles<br />Isosceles Triangles<br />Equilateral Triangles<br />
Scalene Triangles<br />All angles different<br />All sides different<br />Can be a right triangle<br />Not always<br />
Isosceles Triangles<br />Two angles are equal<br />Third = 180 – Sum of two equal angles<br />Two sides are equal<br />Thi...
Equilateral Triangles<br />All three sides equal<br />All three angles equal<br />Each angle equals 60°<br />
Types of Triangles (cont.)<br />By angles:<br />Oblique Triangles<br />Obtuse Triangles<br />Acute triangles<br />Right Tr...
Types of Triangles (cont.)<br />Oblique triangles<br />Do not have a 90° angle<br />Obtuse Triangles<br />One angle greate...
Acute Triangles<br />All angles less than 90°<br />Both Acute and Obtuse are Oblique<br />Types of Triangles (cont.)<br />
Right Triangles<br />One angle = 90°<br />Called “right angle”<br />Can be isosceles and scalene<br />Cannot be equilatera...
Area of Triangles<br />Area is space enclosed in figure<br />A=(1/2)*b*h<br />h<br />b<br />
Pythagorean Theorem<br />Unique to right triangles<br />Correlation between three sides<br />a2+b2=c2<br />
Pythagorean Theorem (cont.)<br />Pythagorean triples<br />All three sides are integers<br />Examples:<br />a=3, b=4, c=5<b...
Citations<br />kryptos86, “Triangles” June 6, 2010 via Flickr, Creative Commons Attribution, Noncommercial, No Derivative ...
Upcoming SlideShare
Loading in …5
×

Triangles

815 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
815
On SlideShare
0
From Embeds
0
Number of Embeds
7
Actions
Shares
0
Downloads
42
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Triangles

  1. 1. Triangles<br />By Cody Chesney<br />
  2. 2. Polygons<br />Geometric Shape<br />Closed figure<br />Three sides<br />
  3. 3. Angles<br />Two types<br />First – Interior Angles<br />Always three<br />Total 180°<br />
  4. 4. Angles (cont.)<br />Second – Exterior Angles<br />Along line from interior angle<br />Exterior + Interior = 180°<br />Sum of other interior angles<br />
  5. 5. Types of Triangles<br />By sides:<br />Scalene Triangles<br />Isosceles Triangles<br />Equilateral Triangles<br />
  6. 6. Scalene Triangles<br />All angles different<br />All sides different<br />Can be a right triangle<br />Not always<br />
  7. 7. Isosceles Triangles<br />Two angles are equal<br />Third = 180 – Sum of two equal angles<br />Two sides are equal<br />Third shorter than each of other two<br />
  8. 8. Equilateral Triangles<br />All three sides equal<br />All three angles equal<br />Each angle equals 60°<br />
  9. 9. Types of Triangles (cont.)<br />By angles:<br />Oblique Triangles<br />Obtuse Triangles<br />Acute triangles<br />Right Triangles<br />
  10. 10. Types of Triangles (cont.)<br />Oblique triangles<br />Do not have a 90° angle<br />Obtuse Triangles<br />One angle greater than 90°<br />
  11. 11. Acute Triangles<br />All angles less than 90°<br />Both Acute and Obtuse are Oblique<br />Types of Triangles (cont.)<br />
  12. 12. Right Triangles<br />One angle = 90°<br />Called “right angle”<br />Can be isosceles and scalene<br />Cannot be equilateral<br />
  13. 13. Area of Triangles<br />Area is space enclosed in figure<br />A=(1/2)*b*h<br />h<br />b<br />
  14. 14. Pythagorean Theorem<br />Unique to right triangles<br />Correlation between three sides<br />a2+b2=c2<br />
  15. 15. Pythagorean Theorem (cont.)<br />Pythagorean triples<br />All three sides are integers<br />Examples:<br />a=3, b=4, c=5<br />a=8, b=15, c=17<br />
  16. 16. Citations<br />kryptos86, “Triangles” June 6, 2010 via Flickr, Creative Commons Attribution, Noncommercial, No Derivative Works License<br />tanakawho, “Abstract (triangle)” February 3, 2010 via Flickr, Creative Commons Attribution, Noncommercial License<br />Swamibu, “The Great Pyramid: Size Matters” January 18, 2008 via Flickr, Creative Commons Attribution, Noncommercial License<br />

×