SlideShare a Scribd company logo
1 of 29
Download to read offline
Calculations using
Orgel and Tanabe-Sugano Diagrams
V.SANTHANAM
Department of Chemistry
SCSVMV
Konig’s Method for Dq and B values when ground state is T
Konig’s Method for Dq and B values when ground state is A
d1 -system
▪ Metal complexes with d1configuration do not have any inter electronic
repulsion .
▪ The single electron resides in the t2g orbital ground state.
▪ When t2g orbital set holds the single electron, six microstates
will have 2T2g state energy of -4 Dq and when the electron is promoted
to the eg orbital, the four microstates will have 2Eg state energy of +6
Dq.
▪ The only parameter to be calculated is the magnitude of crystal field
splitting energy (10 Dq).
▪ The single absorption band in a UV-vis experiment is exactly what
we are looking for.
▪ The energy of the transition 2T2g → 2Eg gives the value of Δ directly .
▪ The electronically degenerate t2g
1 configuration will undergo Jahn-Teller
distortion and it produces a shoulder in the peak.
▪ Consider the example of [Ti(H2O)6]3+
▪ Calculation of B: No need to calculate the Racah parameter since
there is only one electron.
▪ Calculation of Δo: The purple color of the complex ion [Ti(H2O)6]3+
is due to a broad absorption band at 20300 cm-1 arising from 2T2g →
2Eg transition.
▪ Hence, 10 Dq for this complex is 20300 cm-1.
▪ Calculation of β: No need to calculate the nephelauxetic ratio, since
only one electron is there.
d9 system
▪ In d9 octahedral metal complexes, the ground state filling of
electrons (t2g
6 eg
3) has only four microstates that have 2Eg
energy state with -6Dq.
▪ When the electron from t2g is promoted to the eg orbital set
,the new configuration will have six microstates that have
2T2g energy state with +4 Dq.
▪ This could also be described as a positive "hole" that moves
from the eg to the t2g orbital set.
d9 system
▪ The sign of Dq is opposite that for d1, with a 2Eg ground state and a
2T2g excited state.
▪ Like the d1 case, the only parameter that is needed to be calculated in
d9 complexes is the magnitude of crystal field splitting energy (10 Dq)
▪ The single absorption band in a UV-vis experiment is exactly what we
are looking for. Hence, the energy of the transition 2Eg → 2T2g gives
the value of Δ directly.
▪ Consider the example of [Cu(H2O)6]2+
▪ Calculation of B: No need to calculate the Racah parameter
▪ Calculation of Δo: In the UV-visible spectra of [Cu(H2O)6]2+the
broad band at 12000 cm-1
▪ This is due to spin allowed 2Eg → 2T2g transition; and hence,
10 Dq for this complex is 12000 cm-1.
▪ Calculation of β: No need to calculate the nephelauxetic ratio.
d2- system
▪ Metal complexes with d2-configuration have 3F ground state
term symbol in the absence of any crystal field.
▪ However, when six ligands approach in octahedral coordination,
the ground state term symbol becomes 3T1g and remains as
such in weak as well as in strong ligand fields.
▪ The Orgel and Tanabe-Sugano diagram for d2-configuration can
be used to estimate the value of crystal field splitting energy
for these transition metal complexes.
Example:
[V(H2O)6]3+
V3+ contains two d electrons
Calculation of B
▪ From the Orgel diagram, it can be clearly seen that the ground state
for d2-octahedral complexes is 3T1g and there are three main transitions
before the crossover point.
▪ Moreover, it is worthy to note down that the order of second and
third transitions is reversed after the crossover point and only two
bands will be observed at or near the crossover point.
▪ As the magnitude of the crystal field splitting energy increases,
the 3T1g(F) and 3T1g(P) states repel each other more and more with a
magnitude of x energy value.
▪ It is known that
ν1 = 8 Dq+x ------- (1)
ν2 = 18 Dq+x ------- (2)
ν3 = 15 B + 6Dq + 2x --------(3)
(2) – (1) = (ν2- ν1) = 10Dq --------(4)
(2) + (1) = (ν2+ ν1) = 26Dq +2x ---------(5)
Substituting the value of 2x from (5) in (3) we get,
ν3 = 15 B + 6Dq + (ν2+ ν1)-26 Dq --------(6)
ν3 = 15B -20Dq + (ν2+ ν1) --------(7)
substituting the value of 10Dq from (4)
ν3 = 15B -2(ν2- ν1) + (ν2+ ν1)---------(8)
ν3 = 15B +3ν1 - ν2
B = (ν3 + ν2 - 3ν1) / 15 ---------- (9)
How to use the Tanabe –Sugano diagrams?
For a d2 system three transitions are
possible.
ν1 = 3T1g→ 3T2g, - 17800 cm-1
ν2 = 3T1g → 3T1g(P) -39600 cm-1
ν3 = 3T1g → 3A2g – 25700 cm-1
Take the ratio v3/v1
25700 / 17800 = 1.44
Now in the diagram we have to
find the Dq/B ratio at which v3/v1
= 1.44
It gives the energies of transitions
form which B value can be
calculated.
d2-system
▪ For a d2 system, [V(H2O)6]3+ is an ideal example.
▪ Two bands are observed.
▪ Third one may be too energetic, obscured by the CT bands.
▪ The first band is assigned easily to 3T1g 3T2g which is at 17800 cm-1
▪ If there is no term interaction i.e. x=0, then
ν1
3T1g 3T2 g = 8Dq+x =17800 - 8Dq = 17800
Dq = 2225 cm-1
▪ Wkt ν2 = 18Dq + x = 18Dq = 39600 cm-1
▪ So the other band is appearing at 25700 cm-1 cannot be ν2 it should be ν3
Using Tanabe-Sugano diagram for d2 system – Lever’s Method
▪ From the Tanabe-Sugano diagram, in the UV-visible spectra of
[V(H2O)6]3+, two bands are observed with maxima at around
17800 and 25700 cm-1.
▪ There are three possible transitions expected, which include:
– ν1 = 3T1g→ 3T2g,
– ν2 = 3T1g → 3T1g(P)
– ν3 = 3T1g → 3A2g
– but only two are observed , since ν2 is obscured by CT bands.
▪ Now taking the ratio
ν3/ ν1 = 25700 / 17800 = 1.44
`` v2/v1 v3/v1 v3/v2 v3/B
0.1 2.234 19.279 8.629 15.62
0.2 2.22 9.93 4.473 16.279
0.3 2.207 6.828 3.094 16.971
0.4 2.195 5.288 2.408 17.692
0.5 2.185 4.37 2 18.439
0.6 2.175 3.763 1.73 19.209
0.7 2.167 3.333 1.538 20
0.8 2.159 3.014 1.396 20.809
0.9 2.151 2.768 1.286 21.633
1 2.145 2.572 1.199 22.472
1.1 2.138 2.414 1.129 23.324
1.2 2.133 2.283 1.071 24.187
1.3 2.127 2.173 1.022 25.06
1.4 2.123 2.08 0.98 25.942
1.5 2.118 2 0.944 26.833
1.6 2.114 1.93 0.913 27.731
1.7 2.11 1.869 0.866 28.636
1.8 2.106 1.816 0.862 29.547
1.9 2.103 1.768 0.841 30.463
2 2.099 1.725 0.822 31.385
2.1 2.096 1.687 0.805 32.311
2.2 2.093 1.652 0.789 33.243
2.3 2.091 1.621 0.775 34.176
2.4 2.088 1.592 0.762 35.114
2.5 2.086 1.566 0.751 36.056
`` v2/v1 v3/v1 v3/v2 v3/B
2.6 2.083 1.542 0.74 37
2.7 2.081 1.519 0.73 37.947
2.8 2.079 1.499 0.721 38.897
2.9 2.077 1.48 0.713 39.85
3 2.075 1.462 0.705 40.804
3.1 2.073 1.466 0.697 41.761
3.2 2.072 1.431 0.691 42.72
3.3 2.07 1.416 0.684 43.681
3.4 2.068 1.403 0.678 44.643
3.5 2.067 1.39 0.673 45.607
3.6 2.066 1.378 0.667 46.573
3.7 2.064 1.367 0.662 47.539
3.8 2.063 1.357 0.658 48.508
3.9 2.062 1.347 0.653 49.477
4 2.06 1.337 0.649 50.448
4.1 2.059 1.328 0.645 51.42
4.2 2.058 1.32 0.641 52.393
4.3 2.057 1.312 0.638 53.367
4.4 2.056 1.304 0.634 54.342
4.5 2.055 1.297 0.631 55.317
4.6 2.024 1.29 0.628 56.294
4.7 2.053 1.283 0.625 57.271
4.8 2.052 1.277 0.622 58.249
4.9 2.051 1.271 0.619 59.228
5 2.05 1.625 0.617 60.208
v2/v1
v3/v1
v3/v2
Chart Title
ν3/ν1 = 25700 / 17800 = 1.443
From the diagram,
ν3/ν1 = 1.443 corresponds to Dq/B = 3.2
ν3/B against 3.2 is 42.72
ν3 /B’ = 42.72
B’ = ν3 /42.72
B’ = 25700 /42.72
B’ = 601.59 cm-1
Dq/B’ = 3.2
Dq = 3.2 * 601.59
Dq = 1925cm-1
10Dq = 19250cm-1
β = 601.59 / 860 = 0.699
• From the Tanabe-Sugano
diagram we can read the ν1/B’
or ν2/B’ or ν3/B’ from which
the B’ value can be calculated.
•Knowing the value of B’, Dq
and x values can be computed.
d7- system
▪ Example: [Co(H2O)6]2+
▪ Ground term 4T1g
▪ Expected transitions three
– 4T1g  4T2g v1 = 8000 cm-1
– 4T1g  4A2g v2 = 19600 cm-1
– 4T1g  4T1g (P) v3 = 21600 cm-1
`` v2/v1 v3/v1 v3/v2 v3/B
0.1 2.234 19.279 8.629 15.62
0.2 2.22 9.93 4.473 16.279
0.3 2.207 6.828 3.094 16.971
0.4 2.195 5.288 2.408 17.692
0.5 2.185 4.37 2 18.439
0.6 2.175 3.763 1.73 19.209
0.7 2.167 3.333 1.538 20
0.8 2.159 3.014 1.396 20.809
0.9 2.151 2.768 1.286 21.633
1 2.145 2.572 1.199 22.472
1.1 2.138 2.414 1.129 23.324
1.2 2.133 2.283 1.071 24.187
1.3 2.127 2.173 1.022 25.06
1.4 2.123 2.08 0.98 25.942
1.5 2.118 2 0.944 26.833
1.6 2.114 1.93 0.913 27.731
1.7 2.11 1.869 0.866 28.636
1.8 2.106 1.816 0.862 29.547
1.9 2.103 1.768 0.841 30.463
2 2.099 1.725 0.822 31.385
2.1 2.096 1.687 0.805 32.311
2.2 2.093 1.652 0.789 33.243
2.3 2.091 1.621 0.775 34.176
2.4 2.088 1.592 0.762 35.114
2.5 2.086 1.566 0.751 36.056
`` v2/v1 v3/v1 v3/v2 v3/B
2.6 2.083 1.542 0.74 37
2.7 2.081 1.519 0.73 37.947
2.8 2.079 1.499 0.721 38.897
2.9 2.077 1.48 0.713 39.85
3 2.075 1.462 0.705 40.804
3.1 2.073 1.466 0.697 41.761
3.2 2.072 1.431 0.691 42.72
3.3 2.07 1.416 0.684 43.681
3.4 2.068 1.403 0.678 44.643
3.5 2.067 1.39 0.673 45.607
3.6 2.066 1.378 0.667 46.573
3.7 2.064 1.367 0.662 47.539
3.8 2.063 1.357 0.658 48.508
3.9 2.062 1.347 0.653 49.477
4 2.06 1.337 0.649 50.448
4.1 2.059 1.328 0.645 51.42
4.2 2.058 1.32 0.641 52.393
4.3 2.057 1.312 0.638 53.367
4.4 2.056 1.304 0.634 54.342
4.5 2.055 1.297 0.631 55.317
4.6 2.024 1.29 0.628 56.294
4.7 2.053 1.283 0.625 57.271
4.8 2.052 1.277 0.622 58.249
4.9 2.051 1.271 0.619 59.228
5 2.05 1.625 0.617 60.208
v3/v1 = 2.7 from the above table Dq/B” = 0.9
=> v3/B’ = 21.633
B’ = v3/21.633
= 21600 / 21.633
B’ = 998 cm-1
It is known that Dq/B’ = 0.9
So Dq = 0.9 x 998 = 898.2 cm-1
10Dq = 898.2 x 10 = 8982 cm-1
β = 898.2 / 1120 = 0.802
Dq/B
v2/v1
v3/v1
v3/v2
v3/B Dq/B
When the ground term is A
Dq/B v2/v1 v3/v1 v3/v2 v3/B
0.1 1.799 16.211 9.062 16.21
0.2 1.777 8.273 4.909 17.446
0.3 1.764 6.236 3.535 18.708
0.4 1.75 5 2.857 20
0.5 1.735 4.265 2.458 21.325
0.6 1.719 3.781 2.199 22.685
0.7 1.702 3.44 2.021 24.083
0.8 1.685 3.19 1.893 25.521
0.9 1.667 3 1.8 27
1 1.648 2.852 1.731 28.521
1.1 1.629 2.735 1.679 30.083
1.2 1.61 2.64 1.64 31.685
1.3 1.59 2.563 1.612 33.325
1.4 1.57 2.5 1.591 35
1.5 1.553 2.447 1.576 36.708
1.6 1.535 2.403 1.566 38.446
1.7 1.517 2.365 1.559 40.211
1.8 1.5 2.333 1.556 42
1.9 1.484 2.306 1.554 43.81
2 1.468 2.282 1.552 45.639
2.1 1.453 2.261 1.556 47.485
2.2 1.439 2.243 1.559 49.346
2.3 1.425 2.227 1.563 51.22
2.4 1.412 2.213 1.567 53.105
2.5 1.4 2.2 1.571 55
Dq/B v2/v1 v3/v1 v3/v2 v3/B
2.6 1.388 2.189 1.576 56.904
2.7 1.377 2.178 1.582 58.817
2.8 1.367 2.169 1.587 60.736
2.9 1.356 2.161 1.593 62.662
3 1.347 2.153 1.599 65.493
3.1 1.338 2.146 1.604 66.53
3.2 1.329 2.14 1.61 68.471
3.3 1.321 2.134 1.616 70.416
3.4 1.313 2.128 1.621 72.365
3.5 1.305 2.123 1.627 74.318
3.6 1.298 2.119 1.632 76.273
3.7 1.291 2.114 1.638 78.232
3.8 1.284 2.11 1.643 80.192
3.9 1.278 2.107 1.648 82.155
4 1.272 2.103 1.653 84.121
4.1 1.266 2.1 1.658 86.088
4.2 1.261 2.097 1.663 88.057
4.3 1.255 2.094 1.668 90.028
4.4 1.25 2.091 1.673 92
4.5 1.245 2.088 1.677 93.974
4.6 1.24 2.086 1.682 95.949
4.7 1.236 2.084 1.686 97.925
4.8 1.231 2.081 1.69 99.902
4.9 1.227 2.079 1.695 101.881
5 1.223 2.077 1.699 103.86
Systems with A2 ground state- d3 system
▪ Example: [Cr(H2O)6]3+
▪ Ground term is 4A2g
▪ Three transitions expected
– 4A2g  4T2g (v1) = 10Dq
– 4A2g  4T1g (F) (v2) = 18Dq-x
– 4A2g  4T1g (P) (v3) = 12Dq+15B’+x
▪ v1 occurs at 17,400 cm-1
▪ v2 occurs at 24,600 cm-1
▪ v3 occurs at 37,800 cm-1
▪ Considering v2/v1 = 24600 / 17400 = 1.413
▪ From the table ,
for v2/v1 = 1.413 , Dq/B ‘= 2.4
▪ From the d3 Tanabe-Sugano diagram,
– For Dq/B’ = 2.4 v1/B’ = 25
B’ = 696 cm-1
▪ If v2/v1 is used B’ value should be calculated by
using v1/B’ or v2/B’ for consistency.
▪ If v3/v2 is used v3/B’ should be used to calculate B’
▪ Dq/B’ = 2.4
▪ Dq = 2.4 x 696 = 1670 cm-1
▪ 10Dq = 16700 cm-1
▪ From v2 = 18Dq –x, x is calculated as 6270 cm-1
Dq/B v2/v1 v3/v1 v3/v2 v3/B
0.1 1.799 16.211 9.062 16.21
0.2 1.777 8.273 4.909 17.446
0.3 1.764 6.236 3.535 18.708
0.4 1.75 5 2.857 20
0.5 1.735 4.265 2.458 21.325
0.6 1.719 3.781 2.199 22.685
0.7 1.702 3.44 2.021 24.083
0.8 1.685 3.19 1.893 25.521
0.9 1.667 3 1.8 27
1 1.648 2.852 1.731 28.521
1.1 1.629 2.735 1.679 30.083
1.2 1.61 2.64 1.64 31.685
1.3 1.59 2.563 1.612 33.325
1.4 1.57 2.5 1.591 35
1.5 1.553 2.447 1.576 36.708
1.6 1.535 2.403 1.566 38.446
1.7 1.517 2.365 1.559 40.211
1.8 1.5 2.333 1.556 42
1.9 1.484 2.306 1.554 43.81
2 1.468 2.282 1.552 45.639
2.1 1.453 2.261 1.556 47.485
2.2 1.439 2.243 1.559 49.346
2.3 1.425 2.227 1.563 51.22
2.4 1.412 2.213 1.567 53.105
2.5 1.4 2.2 1.571 55
d8 system – [Ni(H2O)6]2+
•Example: [Ni(H2O)6]2+
•Ground term is 3A2g
• Three transitions are observed
 3A2g  3T2g (v1) = 10Dq
 3A2g  3T1g (F) (v2) = 18Dq-x
 3A2g  3T1g (P) (v3) = 12Dq+15B’+x
 v1 occurs at 8700cm-1
 v2 occurs at 14500 cm-1
 v3 occurs at 25300 cm-1
v3 /v1 = 25300/8700 = 2.9
From the table Dq/B = 0.95
v3/B = 27.755
B= 915 cm-1
Dq/B = 0.95
So Dq = 866 cm-1
10 Dq = 8660 cm-1
x = 1088 cm-1
β = 915 / 1080
= 0.8472
Dq/B v2/v1 v3/v1 v3/v2 v3/B
0.1 1.799 16.211 9.062 16.21
0.2 1.777 8.273 4.909 17.446
0.3 1.764 6.236 3.535 18.708
0.4 1.75 5 2.857 20
0.5 1.735 4.265 2.458 21.325
0.6 1.719 3.781 2.199 22.685
0.7 1.702 3.44 2.021 24.083
0.8 1.685 3.19 1.893 25.521
0.9 1.667 3 1.8 27
1 1.648 2.852 1.731 28.521
1.1 1.629 2.735 1.679 30.083
1.2 1.61 2.64 1.64 31.685
1.3 1.59 2.563 1.612 33.325
1.4 1.57 2.5 1.591 35
1.5 1.553 2.447 1.576 36.708
1.6 1.535 2.403 1.566 38.446
1.7 1.517 2.365 1.559 40.211
1.8 1.5 2.333 1.556 42
1.9 1.484 2.306 1.554 43.81
2 1.468 2.282 1.552 45.639
2.1 1.453 2.261 1.556 47.485
2.2 1.439 2.243 1.559 49.346
2.3 1.425 2.227 1.563 51.22
2.4 1.412 2.213 1.567 53.105
2.5 1.4 2.2 1.571 55
Electronic spectra problems

More Related Content

What's hot (20)

Electronic spectra
Electronic spectraElectronic spectra
Electronic spectra
 
Esr spectroscopy
Esr spectroscopyEsr spectroscopy
Esr spectroscopy
 
Metal alkyne compledes
Metal alkyne compledesMetal alkyne compledes
Metal alkyne compledes
 
Metal carbonyls
Metal carbonylsMetal carbonyls
Metal carbonyls
 
Oxidative addition
Oxidative additionOxidative addition
Oxidative addition
 
Electronic spectra
Electronic spectraElectronic spectra
Electronic spectra
 
Term symbols
Term symbolsTerm symbols
Term symbols
 
Jahn-Teller Theorem
Jahn-Teller TheoremJahn-Teller Theorem
Jahn-Teller Theorem
 
Huckel Molecular Orbital Theory
Huckel Molecular Orbital Theory Huckel Molecular Orbital Theory
Huckel Molecular Orbital Theory
 
Crystal field theory
Crystal field theoryCrystal field theory
Crystal field theory
 
Tanabe sugano diagram
Tanabe sugano diagramTanabe sugano diagram
Tanabe sugano diagram
 
Cryptates
Cryptates Cryptates
Cryptates
 
Crystal field stabilization energy
Crystal field stabilization energyCrystal field stabilization energy
Crystal field stabilization energy
 
La Porte Selection rule.pptx
La Porte Selection rule.pptxLa Porte Selection rule.pptx
La Porte Selection rule.pptx
 
Lanthanide shift reagents in nmr
Lanthanide shift reagents in nmrLanthanide shift reagents in nmr
Lanthanide shift reagents in nmr
 
Mossbauer Spectroscopy
Mossbauer SpectroscopyMossbauer Spectroscopy
Mossbauer Spectroscopy
 
Organometallic chemistry
Organometallic chemistry Organometallic chemistry
Organometallic chemistry
 
Carbenes .......
Carbenes .......Carbenes .......
Carbenes .......
 
Electron Spin Resonance (ESR) Spectroscopy
Electron Spin Resonance (ESR) SpectroscopyElectron Spin Resonance (ESR) Spectroscopy
Electron Spin Resonance (ESR) Spectroscopy
 
3. Molecular Orbital Theory-2011.ppt
3. Molecular Orbital Theory-2011.ppt3. Molecular Orbital Theory-2011.ppt
3. Molecular Orbital Theory-2011.ppt
 

Similar to Electronic spectra problems

Modern power system analysis. By D.P. and Nagrath, I.J., 2003. Tata McGraw-Hi...
Modern power system analysis. By D.P. and Nagrath, I.J., 2003. Tata McGraw-Hi...Modern power system analysis. By D.P. and Nagrath, I.J., 2003. Tata McGraw-Hi...
Modern power system analysis. By D.P. and Nagrath, I.J., 2003. Tata McGraw-Hi...4bh7qsqvyb
 
Electron impact excitation of H-like, He-like and Li-like ions with Z ≤ 30
Electron impact excitation of H-like, He-like and Li-like ions with Z ≤ 30Electron impact excitation of H-like, He-like and Li-like ions with Z ≤ 30
Electron impact excitation of H-like, He-like and Li-like ions with Z ≤ 30AstroAtom
 
Solution manual for water resources engineering 3rd edition - david a. chin
Solution manual for water resources engineering 3rd edition - david a. chinSolution manual for water resources engineering 3rd edition - david a. chin
Solution manual for water resources engineering 3rd edition - david a. chinSalehkhanovic
 
Spectroscopic methods 2018 Part 1 uv vis TM complexes
Spectroscopic methods 2018 Part 1 uv vis TM complexesSpectroscopic methods 2018 Part 1 uv vis TM complexes
Spectroscopic methods 2018 Part 1 uv vis TM complexesChris Sonntag
 
Paolo Creminelli "Dark Energy after GW170817"
Paolo Creminelli "Dark Energy after GW170817"Paolo Creminelli "Dark Energy after GW170817"
Paolo Creminelli "Dark Energy after GW170817"SEENET-MTP
 
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 04 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 04 SolutionsCH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 04 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 04 Solutionssemihypocrite
 
Uv spectroscopy 2019 part 2 compact
Uv spectroscopy 2019 part 2 compactUv spectroscopy 2019 part 2 compact
Uv spectroscopy 2019 part 2 compactChris Sonntag
 
Collisions strengths for O2+ + e-
Collisions strengths for O2+ + e-Collisions strengths for O2+ + e-
Collisions strengths for O2+ + e-Taha Sochi
 
Ah32642646
Ah32642646Ah32642646
Ah32642646IJMER
 
Solucionario serway cap 27
Solucionario serway cap 27Solucionario serway cap 27
Solucionario serway cap 27Carlo Magno
 
INTRODUCTION TO CIRCUIT THEORY (A PRACTICAL APPROACH)
INTRODUCTION TO CIRCUIT THEORY (A PRACTICAL APPROACH)INTRODUCTION TO CIRCUIT THEORY (A PRACTICAL APPROACH)
INTRODUCTION TO CIRCUIT THEORY (A PRACTICAL APPROACH)ENGR. KADIRI K. O. Ph.D
 
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...HectorMayolNovoa
 

Similar to Electronic spectra problems (20)

Solucionario_Felder.pdf
Solucionario_Felder.pdfSolucionario_Felder.pdf
Solucionario_Felder.pdf
 
Network analysis
Network analysisNetwork analysis
Network analysis
 
Skewness
SkewnessSkewness
Skewness
 
Modern power system analysis. By D.P. and Nagrath, I.J., 2003. Tata McGraw-Hi...
Modern power system analysis. By D.P. and Nagrath, I.J., 2003. Tata McGraw-Hi...Modern power system analysis. By D.P. and Nagrath, I.J., 2003. Tata McGraw-Hi...
Modern power system analysis. By D.P. and Nagrath, I.J., 2003. Tata McGraw-Hi...
 
Electron impact excitation of H-like, He-like and Li-like ions with Z ≤ 30
Electron impact excitation of H-like, He-like and Li-like ions with Z ≤ 30Electron impact excitation of H-like, He-like and Li-like ions with Z ≤ 30
Electron impact excitation of H-like, He-like and Li-like ions with Z ≤ 30
 
Hole and Orgel.ppt
Hole and Orgel.pptHole and Orgel.ppt
Hole and Orgel.ppt
 
Maths book2 Text book answer
Maths book2 Text book answerMaths book2 Text book answer
Maths book2 Text book answer
 
Solution manual for water resources engineering 3rd edition - david a. chin
Solution manual for water resources engineering 3rd edition - david a. chinSolution manual for water resources engineering 3rd edition - david a. chin
Solution manual for water resources engineering 3rd edition - david a. chin
 
Capítulo 11 (5th edition)rewrweerww
Capítulo 11 (5th edition)rewrweerwwCapítulo 11 (5th edition)rewrweerww
Capítulo 11 (5th edition)rewrweerww
 
Spectroscopic methods 2018 Part 1 uv vis TM complexes
Spectroscopic methods 2018 Part 1 uv vis TM complexesSpectroscopic methods 2018 Part 1 uv vis TM complexes
Spectroscopic methods 2018 Part 1 uv vis TM complexes
 
Paolo Creminelli "Dark Energy after GW170817"
Paolo Creminelli "Dark Energy after GW170817"Paolo Creminelli "Dark Energy after GW170817"
Paolo Creminelli "Dark Energy after GW170817"
 
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 04 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 04 SolutionsCH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 04 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 04 Solutions
 
Uv spectroscopy 2019 part 2 compact
Uv spectroscopy 2019 part 2 compactUv spectroscopy 2019 part 2 compact
Uv spectroscopy 2019 part 2 compact
 
Collisions strengths for O2+ + e-
Collisions strengths for O2+ + e-Collisions strengths for O2+ + e-
Collisions strengths for O2+ + e-
 
Ah32642646
Ah32642646Ah32642646
Ah32642646
 
Sm chapter27
Sm chapter27Sm chapter27
Sm chapter27
 
Solucionario serway cap 27
Solucionario serway cap 27Solucionario serway cap 27
Solucionario serway cap 27
 
cutset retiming
cutset retimingcutset retiming
cutset retiming
 
INTRODUCTION TO CIRCUIT THEORY (A PRACTICAL APPROACH)
INTRODUCTION TO CIRCUIT THEORY (A PRACTICAL APPROACH)INTRODUCTION TO CIRCUIT THEORY (A PRACTICAL APPROACH)
INTRODUCTION TO CIRCUIT THEORY (A PRACTICAL APPROACH)
 
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...
 

More from SANTHANAM V

Alternate synthetic fuels
Alternate synthetic fuelsAlternate synthetic fuels
Alternate synthetic fuelsSANTHANAM V
 
Quinine - Constitution
Quinine - ConstitutionQuinine - Constitution
Quinine - ConstitutionSANTHANAM V
 
Stability of metal complexes
Stability of metal complexesStability of metal complexes
Stability of metal complexesSANTHANAM V
 
Reactions of complexes
Reactions of complexesReactions of complexes
Reactions of complexesSANTHANAM V
 
World environment day
World environment dayWorld environment day
World environment daySANTHANAM V
 
Coordination chemistry - MOT
Coordination chemistry - MOTCoordination chemistry - MOT
Coordination chemistry - MOTSANTHANAM V
 
Coordination chemistry - CFT
Coordination chemistry - CFTCoordination chemistry - CFT
Coordination chemistry - CFTSANTHANAM V
 
Coordination chemistry - introduction
Coordination chemistry - introductionCoordination chemistry - introduction
Coordination chemistry - introductionSANTHANAM V
 
Mossbauer spectroscopy - Principles and applications
Mossbauer spectroscopy - Principles and applicationsMossbauer spectroscopy - Principles and applications
Mossbauer spectroscopy - Principles and applicationsSANTHANAM V
 
NMR- Inorgnic applications
NMR- Inorgnic applicationsNMR- Inorgnic applications
NMR- Inorgnic applicationsSANTHANAM V
 
PRINCIPLES OF ESR
PRINCIPLES OF ESRPRINCIPLES OF ESR
PRINCIPLES OF ESRSANTHANAM V
 
APPLICATIONS OF ESR SPECTROSCOPY TO METAL COMPLEXES
APPLICATIONS OF ESR SPECTROSCOPY TO METAL COMPLEXESAPPLICATIONS OF ESR SPECTROSCOPY TO METAL COMPLEXES
APPLICATIONS OF ESR SPECTROSCOPY TO METAL COMPLEXESSANTHANAM V
 

More from SANTHANAM V (16)

Alternate synthetic fuels
Alternate synthetic fuelsAlternate synthetic fuels
Alternate synthetic fuels
 
Data analysis
Data analysisData analysis
Data analysis
 
Quinine - Constitution
Quinine - ConstitutionQuinine - Constitution
Quinine - Constitution
 
Stability of metal complexes
Stability of metal complexesStability of metal complexes
Stability of metal complexes
 
Reactions of complexes
Reactions of complexesReactions of complexes
Reactions of complexes
 
World environment day
World environment dayWorld environment day
World environment day
 
Coordination chemistry - MOT
Coordination chemistry - MOTCoordination chemistry - MOT
Coordination chemistry - MOT
 
Coordination chemistry - CFT
Coordination chemistry - CFTCoordination chemistry - CFT
Coordination chemistry - CFT
 
Coordination chemistry - introduction
Coordination chemistry - introductionCoordination chemistry - introduction
Coordination chemistry - introduction
 
Mossbauer spectroscopy - Principles and applications
Mossbauer spectroscopy - Principles and applicationsMossbauer spectroscopy - Principles and applications
Mossbauer spectroscopy - Principles and applications
 
NMR- Inorgnic applications
NMR- Inorgnic applicationsNMR- Inorgnic applications
NMR- Inorgnic applications
 
Dynamic NMR
Dynamic NMRDynamic NMR
Dynamic NMR
 
Biodiversity
BiodiversityBiodiversity
Biodiversity
 
ECOSYSTEMS
ECOSYSTEMSECOSYSTEMS
ECOSYSTEMS
 
PRINCIPLES OF ESR
PRINCIPLES OF ESRPRINCIPLES OF ESR
PRINCIPLES OF ESR
 
APPLICATIONS OF ESR SPECTROSCOPY TO METAL COMPLEXES
APPLICATIONS OF ESR SPECTROSCOPY TO METAL COMPLEXESAPPLICATIONS OF ESR SPECTROSCOPY TO METAL COMPLEXES
APPLICATIONS OF ESR SPECTROSCOPY TO METAL COMPLEXES
 

Recently uploaded

STELLAR SYSTEM IN PTERIDOPHYTE Seminar 2023- By Karishma
STELLAR SYSTEM IN PTERIDOPHYTE Seminar 2023- By KarishmaSTELLAR SYSTEM IN PTERIDOPHYTE Seminar 2023- By Karishma
STELLAR SYSTEM IN PTERIDOPHYTE Seminar 2023- By KarishmaAMiracle3
 
CDS Fundamentals of digital communication system UNIT 1 AND 2.pdf
CDS Fundamentals of digital communication system UNIT 1 AND 2.pdfCDS Fundamentals of digital communication system UNIT 1 AND 2.pdf
CDS Fundamentals of digital communication system UNIT 1 AND 2.pdfshubhangisonawane6
 
Food_safety_Management_pptx.pptx in microbiology
Food_safety_Management_pptx.pptx in microbiologyFood_safety_Management_pptx.pptx in microbiology
Food_safety_Management_pptx.pptx in microbiologyHemantThakare8
 
Potato spindle tuber disease VIRIOID DISEASE
Potato spindle tuber disease  VIRIOID DISEASEPotato spindle tuber disease  VIRIOID DISEASE
Potato spindle tuber disease VIRIOID DISEASEKARTHIK REDDY C A
 
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer Zahana
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer ZahanaEGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer Zahana
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer ZahanaDr.Mahmoud Abbas
 
BACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika DasBACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika DasChayanika Das
 
DERMATOMYCOSIS Epidermophyton KKR.pptx
DERMATOMYCOSIS Epidermophyton   KKR.pptxDERMATOMYCOSIS Epidermophyton   KKR.pptx
DERMATOMYCOSIS Epidermophyton KKR.pptxKARTHIK REDDY C A
 
Interpreting SDSS extragalactic data in the era of JWST
Interpreting SDSS extragalactic data in the era of JWSTInterpreting SDSS extragalactic data in the era of JWST
Interpreting SDSS extragalactic data in the era of JWSTAlexander F. Mayer
 
Anatomy of Duodenum- detailed ppt presentation for science students
Anatomy of Duodenum- detailed ppt presentation for science studentsAnatomy of Duodenum- detailed ppt presentation for science students
Anatomy of Duodenum- detailed ppt presentation for science studentsgargipatil3210
 
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep LearningCombining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learningvschiavoni
 
Mycoplasma Mycoplasma pneumoniae K R.pptx
Mycoplasma Mycoplasma pneumoniae  K R.pptxMycoplasma Mycoplasma pneumoniae  K R.pptx
Mycoplasma Mycoplasma pneumoniae K R.pptxKARTHIK REDDY C A
 
Science (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsScience (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsDobusch Leonhard
 
Astrology's Guidance in Decision Making.
Astrology's Guidance in Decision Making.Astrology's Guidance in Decision Making.
Astrology's Guidance in Decision Making.astral oracle
 
Understanding Nutrition, 16th Edition pdf
Understanding Nutrition, 16th Edition pdfUnderstanding Nutrition, 16th Edition pdf
Understanding Nutrition, 16th Edition pdfHabibouKarbo
 
DEVIATION OF REAL GAS FROM IDEAL BEHAVIOUR.pptx
DEVIATION OF REAL GAS FROM IDEAL BEHAVIOUR.pptxDEVIATION OF REAL GAS FROM IDEAL BEHAVIOUR.pptx
DEVIATION OF REAL GAS FROM IDEAL BEHAVIOUR.pptxAiswarya47
 
Presentation about adversarial image attacks
Presentation about adversarial image attacksPresentation about adversarial image attacks
Presentation about adversarial image attacksKoshinKhodiyar
 
ULTRA STRUCTURE OF FUNGAL CELL AND GROWTH
ULTRA STRUCTURE OF FUNGAL CELL AND GROWTHULTRA STRUCTURE OF FUNGAL CELL AND GROWTH
ULTRA STRUCTURE OF FUNGAL CELL AND GROWTHKARTHIK REDDY C A
 

Recently uploaded (20)

STELLAR SYSTEM IN PTERIDOPHYTE Seminar 2023- By Karishma
STELLAR SYSTEM IN PTERIDOPHYTE Seminar 2023- By KarishmaSTELLAR SYSTEM IN PTERIDOPHYTE Seminar 2023- By Karishma
STELLAR SYSTEM IN PTERIDOPHYTE Seminar 2023- By Karishma
 
Bioenergetics and the role of ATP to drive the beats of life.
Bioenergetics and the role of ATP to drive the beats of life.Bioenergetics and the role of ATP to drive the beats of life.
Bioenergetics and the role of ATP to drive the beats of life.
 
CDS Fundamentals of digital communication system UNIT 1 AND 2.pdf
CDS Fundamentals of digital communication system UNIT 1 AND 2.pdfCDS Fundamentals of digital communication system UNIT 1 AND 2.pdf
CDS Fundamentals of digital communication system UNIT 1 AND 2.pdf
 
Food_safety_Management_pptx.pptx in microbiology
Food_safety_Management_pptx.pptx in microbiologyFood_safety_Management_pptx.pptx in microbiology
Food_safety_Management_pptx.pptx in microbiology
 
Potato spindle tuber disease VIRIOID DISEASE
Potato spindle tuber disease  VIRIOID DISEASEPotato spindle tuber disease  VIRIOID DISEASE
Potato spindle tuber disease VIRIOID DISEASE
 
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer Zahana
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer ZahanaEGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer Zahana
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer Zahana
 
BACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika DasBACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
 
DERMATOMYCOSIS Epidermophyton KKR.pptx
DERMATOMYCOSIS Epidermophyton   KKR.pptxDERMATOMYCOSIS Epidermophyton   KKR.pptx
DERMATOMYCOSIS Epidermophyton KKR.pptx
 
Interpreting SDSS extragalactic data in the era of JWST
Interpreting SDSS extragalactic data in the era of JWSTInterpreting SDSS extragalactic data in the era of JWST
Interpreting SDSS extragalactic data in the era of JWST
 
Anatomy of Duodenum- detailed ppt presentation for science students
Anatomy of Duodenum- detailed ppt presentation for science studentsAnatomy of Duodenum- detailed ppt presentation for science students
Anatomy of Duodenum- detailed ppt presentation for science students
 
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep LearningCombining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
 
Mycoplasma Mycoplasma pneumoniae K R.pptx
Mycoplasma Mycoplasma pneumoniae  K R.pptxMycoplasma Mycoplasma pneumoniae  K R.pptx
Mycoplasma Mycoplasma pneumoniae K R.pptx
 
Science (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsScience (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and Pitfalls
 
Astrology's Guidance in Decision Making.
Astrology's Guidance in Decision Making.Astrology's Guidance in Decision Making.
Astrology's Guidance in Decision Making.
 
Biopreservation .pptx
Biopreservation                    .pptxBiopreservation                    .pptx
Biopreservation .pptx
 
TOPIC OF ELECTROMAGNETISM.PHYSICS NOTES FORM 4
TOPIC OF ELECTROMAGNETISM.PHYSICS NOTES FORM 4TOPIC OF ELECTROMAGNETISM.PHYSICS NOTES FORM 4
TOPIC OF ELECTROMAGNETISM.PHYSICS NOTES FORM 4
 
Understanding Nutrition, 16th Edition pdf
Understanding Nutrition, 16th Edition pdfUnderstanding Nutrition, 16th Edition pdf
Understanding Nutrition, 16th Edition pdf
 
DEVIATION OF REAL GAS FROM IDEAL BEHAVIOUR.pptx
DEVIATION OF REAL GAS FROM IDEAL BEHAVIOUR.pptxDEVIATION OF REAL GAS FROM IDEAL BEHAVIOUR.pptx
DEVIATION OF REAL GAS FROM IDEAL BEHAVIOUR.pptx
 
Presentation about adversarial image attacks
Presentation about adversarial image attacksPresentation about adversarial image attacks
Presentation about adversarial image attacks
 
ULTRA STRUCTURE OF FUNGAL CELL AND GROWTH
ULTRA STRUCTURE OF FUNGAL CELL AND GROWTHULTRA STRUCTURE OF FUNGAL CELL AND GROWTH
ULTRA STRUCTURE OF FUNGAL CELL AND GROWTH
 

Electronic spectra problems

  • 1. Calculations using Orgel and Tanabe-Sugano Diagrams V.SANTHANAM Department of Chemistry SCSVMV
  • 2. Konig’s Method for Dq and B values when ground state is T
  • 3. Konig’s Method for Dq and B values when ground state is A
  • 5. ▪ Metal complexes with d1configuration do not have any inter electronic repulsion . ▪ The single electron resides in the t2g orbital ground state. ▪ When t2g orbital set holds the single electron, six microstates will have 2T2g state energy of -4 Dq and when the electron is promoted to the eg orbital, the four microstates will have 2Eg state energy of +6 Dq. ▪ The only parameter to be calculated is the magnitude of crystal field splitting energy (10 Dq). ▪ The single absorption band in a UV-vis experiment is exactly what we are looking for. ▪ The energy of the transition 2T2g → 2Eg gives the value of Δ directly . ▪ The electronically degenerate t2g 1 configuration will undergo Jahn-Teller distortion and it produces a shoulder in the peak.
  • 6. ▪ Consider the example of [Ti(H2O)6]3+ ▪ Calculation of B: No need to calculate the Racah parameter since there is only one electron. ▪ Calculation of Δo: The purple color of the complex ion [Ti(H2O)6]3+ is due to a broad absorption band at 20300 cm-1 arising from 2T2g → 2Eg transition. ▪ Hence, 10 Dq for this complex is 20300 cm-1. ▪ Calculation of β: No need to calculate the nephelauxetic ratio, since only one electron is there.
  • 7. d9 system ▪ In d9 octahedral metal complexes, the ground state filling of electrons (t2g 6 eg 3) has only four microstates that have 2Eg energy state with -6Dq. ▪ When the electron from t2g is promoted to the eg orbital set ,the new configuration will have six microstates that have 2T2g energy state with +4 Dq. ▪ This could also be described as a positive "hole" that moves from the eg to the t2g orbital set.
  • 8. d9 system ▪ The sign of Dq is opposite that for d1, with a 2Eg ground state and a 2T2g excited state. ▪ Like the d1 case, the only parameter that is needed to be calculated in d9 complexes is the magnitude of crystal field splitting energy (10 Dq) ▪ The single absorption band in a UV-vis experiment is exactly what we are looking for. Hence, the energy of the transition 2Eg → 2T2g gives the value of Δ directly.
  • 9. ▪ Consider the example of [Cu(H2O)6]2+ ▪ Calculation of B: No need to calculate the Racah parameter ▪ Calculation of Δo: In the UV-visible spectra of [Cu(H2O)6]2+the broad band at 12000 cm-1 ▪ This is due to spin allowed 2Eg → 2T2g transition; and hence, 10 Dq for this complex is 12000 cm-1. ▪ Calculation of β: No need to calculate the nephelauxetic ratio.
  • 11. ▪ Metal complexes with d2-configuration have 3F ground state term symbol in the absence of any crystal field. ▪ However, when six ligands approach in octahedral coordination, the ground state term symbol becomes 3T1g and remains as such in weak as well as in strong ligand fields. ▪ The Orgel and Tanabe-Sugano diagram for d2-configuration can be used to estimate the value of crystal field splitting energy for these transition metal complexes. Example: [V(H2O)6]3+ V3+ contains two d electrons
  • 12. Calculation of B ▪ From the Orgel diagram, it can be clearly seen that the ground state for d2-octahedral complexes is 3T1g and there are three main transitions before the crossover point. ▪ Moreover, it is worthy to note down that the order of second and third transitions is reversed after the crossover point and only two bands will be observed at or near the crossover point. ▪ As the magnitude of the crystal field splitting energy increases, the 3T1g(F) and 3T1g(P) states repel each other more and more with a magnitude of x energy value.
  • 13. ▪ It is known that ν1 = 8 Dq+x ------- (1) ν2 = 18 Dq+x ------- (2) ν3 = 15 B + 6Dq + 2x --------(3) (2) – (1) = (ν2- ν1) = 10Dq --------(4) (2) + (1) = (ν2+ ν1) = 26Dq +2x ---------(5) Substituting the value of 2x from (5) in (3) we get, ν3 = 15 B + 6Dq + (ν2+ ν1)-26 Dq --------(6) ν3 = 15B -20Dq + (ν2+ ν1) --------(7) substituting the value of 10Dq from (4) ν3 = 15B -2(ν2- ν1) + (ν2+ ν1)---------(8) ν3 = 15B +3ν1 - ν2 B = (ν3 + ν2 - 3ν1) / 15 ---------- (9)
  • 14. How to use the Tanabe –Sugano diagrams? For a d2 system three transitions are possible. ν1 = 3T1g→ 3T2g, - 17800 cm-1 ν2 = 3T1g → 3T1g(P) -39600 cm-1 ν3 = 3T1g → 3A2g – 25700 cm-1 Take the ratio v3/v1 25700 / 17800 = 1.44 Now in the diagram we have to find the Dq/B ratio at which v3/v1 = 1.44 It gives the energies of transitions form which B value can be calculated.
  • 15. d2-system ▪ For a d2 system, [V(H2O)6]3+ is an ideal example. ▪ Two bands are observed. ▪ Third one may be too energetic, obscured by the CT bands. ▪ The first band is assigned easily to 3T1g 3T2g which is at 17800 cm-1 ▪ If there is no term interaction i.e. x=0, then ν1 3T1g 3T2 g = 8Dq+x =17800 - 8Dq = 17800 Dq = 2225 cm-1 ▪ Wkt ν2 = 18Dq + x = 18Dq = 39600 cm-1 ▪ So the other band is appearing at 25700 cm-1 cannot be ν2 it should be ν3
  • 16. Using Tanabe-Sugano diagram for d2 system – Lever’s Method ▪ From the Tanabe-Sugano diagram, in the UV-visible spectra of [V(H2O)6]3+, two bands are observed with maxima at around 17800 and 25700 cm-1. ▪ There are three possible transitions expected, which include: – ν1 = 3T1g→ 3T2g, – ν2 = 3T1g → 3T1g(P) – ν3 = 3T1g → 3A2g – but only two are observed , since ν2 is obscured by CT bands. ▪ Now taking the ratio ν3/ ν1 = 25700 / 17800 = 1.44
  • 17. `` v2/v1 v3/v1 v3/v2 v3/B 0.1 2.234 19.279 8.629 15.62 0.2 2.22 9.93 4.473 16.279 0.3 2.207 6.828 3.094 16.971 0.4 2.195 5.288 2.408 17.692 0.5 2.185 4.37 2 18.439 0.6 2.175 3.763 1.73 19.209 0.7 2.167 3.333 1.538 20 0.8 2.159 3.014 1.396 20.809 0.9 2.151 2.768 1.286 21.633 1 2.145 2.572 1.199 22.472 1.1 2.138 2.414 1.129 23.324 1.2 2.133 2.283 1.071 24.187 1.3 2.127 2.173 1.022 25.06 1.4 2.123 2.08 0.98 25.942 1.5 2.118 2 0.944 26.833 1.6 2.114 1.93 0.913 27.731 1.7 2.11 1.869 0.866 28.636 1.8 2.106 1.816 0.862 29.547 1.9 2.103 1.768 0.841 30.463 2 2.099 1.725 0.822 31.385 2.1 2.096 1.687 0.805 32.311 2.2 2.093 1.652 0.789 33.243 2.3 2.091 1.621 0.775 34.176 2.4 2.088 1.592 0.762 35.114 2.5 2.086 1.566 0.751 36.056 `` v2/v1 v3/v1 v3/v2 v3/B 2.6 2.083 1.542 0.74 37 2.7 2.081 1.519 0.73 37.947 2.8 2.079 1.499 0.721 38.897 2.9 2.077 1.48 0.713 39.85 3 2.075 1.462 0.705 40.804 3.1 2.073 1.466 0.697 41.761 3.2 2.072 1.431 0.691 42.72 3.3 2.07 1.416 0.684 43.681 3.4 2.068 1.403 0.678 44.643 3.5 2.067 1.39 0.673 45.607 3.6 2.066 1.378 0.667 46.573 3.7 2.064 1.367 0.662 47.539 3.8 2.063 1.357 0.658 48.508 3.9 2.062 1.347 0.653 49.477 4 2.06 1.337 0.649 50.448 4.1 2.059 1.328 0.645 51.42 4.2 2.058 1.32 0.641 52.393 4.3 2.057 1.312 0.638 53.367 4.4 2.056 1.304 0.634 54.342 4.5 2.055 1.297 0.631 55.317 4.6 2.024 1.29 0.628 56.294 4.7 2.053 1.283 0.625 57.271 4.8 2.052 1.277 0.622 58.249 4.9 2.051 1.271 0.619 59.228 5 2.05 1.625 0.617 60.208
  • 18. v2/v1 v3/v1 v3/v2 Chart Title ν3/ν1 = 25700 / 17800 = 1.443 From the diagram, ν3/ν1 = 1.443 corresponds to Dq/B = 3.2 ν3/B against 3.2 is 42.72 ν3 /B’ = 42.72 B’ = ν3 /42.72 B’ = 25700 /42.72 B’ = 601.59 cm-1 Dq/B’ = 3.2 Dq = 3.2 * 601.59 Dq = 1925cm-1 10Dq = 19250cm-1 β = 601.59 / 860 = 0.699
  • 19. • From the Tanabe-Sugano diagram we can read the ν1/B’ or ν2/B’ or ν3/B’ from which the B’ value can be calculated. •Knowing the value of B’, Dq and x values can be computed.
  • 20. d7- system ▪ Example: [Co(H2O)6]2+ ▪ Ground term 4T1g ▪ Expected transitions three – 4T1g  4T2g v1 = 8000 cm-1 – 4T1g  4A2g v2 = 19600 cm-1 – 4T1g  4T1g (P) v3 = 21600 cm-1
  • 21. `` v2/v1 v3/v1 v3/v2 v3/B 0.1 2.234 19.279 8.629 15.62 0.2 2.22 9.93 4.473 16.279 0.3 2.207 6.828 3.094 16.971 0.4 2.195 5.288 2.408 17.692 0.5 2.185 4.37 2 18.439 0.6 2.175 3.763 1.73 19.209 0.7 2.167 3.333 1.538 20 0.8 2.159 3.014 1.396 20.809 0.9 2.151 2.768 1.286 21.633 1 2.145 2.572 1.199 22.472 1.1 2.138 2.414 1.129 23.324 1.2 2.133 2.283 1.071 24.187 1.3 2.127 2.173 1.022 25.06 1.4 2.123 2.08 0.98 25.942 1.5 2.118 2 0.944 26.833 1.6 2.114 1.93 0.913 27.731 1.7 2.11 1.869 0.866 28.636 1.8 2.106 1.816 0.862 29.547 1.9 2.103 1.768 0.841 30.463 2 2.099 1.725 0.822 31.385 2.1 2.096 1.687 0.805 32.311 2.2 2.093 1.652 0.789 33.243 2.3 2.091 1.621 0.775 34.176 2.4 2.088 1.592 0.762 35.114 2.5 2.086 1.566 0.751 36.056 `` v2/v1 v3/v1 v3/v2 v3/B 2.6 2.083 1.542 0.74 37 2.7 2.081 1.519 0.73 37.947 2.8 2.079 1.499 0.721 38.897 2.9 2.077 1.48 0.713 39.85 3 2.075 1.462 0.705 40.804 3.1 2.073 1.466 0.697 41.761 3.2 2.072 1.431 0.691 42.72 3.3 2.07 1.416 0.684 43.681 3.4 2.068 1.403 0.678 44.643 3.5 2.067 1.39 0.673 45.607 3.6 2.066 1.378 0.667 46.573 3.7 2.064 1.367 0.662 47.539 3.8 2.063 1.357 0.658 48.508 3.9 2.062 1.347 0.653 49.477 4 2.06 1.337 0.649 50.448 4.1 2.059 1.328 0.645 51.42 4.2 2.058 1.32 0.641 52.393 4.3 2.057 1.312 0.638 53.367 4.4 2.056 1.304 0.634 54.342 4.5 2.055 1.297 0.631 55.317 4.6 2.024 1.29 0.628 56.294 4.7 2.053 1.283 0.625 57.271 4.8 2.052 1.277 0.622 58.249 4.9 2.051 1.271 0.619 59.228 5 2.05 1.625 0.617 60.208
  • 22. v3/v1 = 2.7 from the above table Dq/B” = 0.9 => v3/B’ = 21.633 B’ = v3/21.633 = 21600 / 21.633 B’ = 998 cm-1 It is known that Dq/B’ = 0.9 So Dq = 0.9 x 998 = 898.2 cm-1 10Dq = 898.2 x 10 = 8982 cm-1 β = 898.2 / 1120 = 0.802
  • 24. Dq/B v2/v1 v3/v1 v3/v2 v3/B 0.1 1.799 16.211 9.062 16.21 0.2 1.777 8.273 4.909 17.446 0.3 1.764 6.236 3.535 18.708 0.4 1.75 5 2.857 20 0.5 1.735 4.265 2.458 21.325 0.6 1.719 3.781 2.199 22.685 0.7 1.702 3.44 2.021 24.083 0.8 1.685 3.19 1.893 25.521 0.9 1.667 3 1.8 27 1 1.648 2.852 1.731 28.521 1.1 1.629 2.735 1.679 30.083 1.2 1.61 2.64 1.64 31.685 1.3 1.59 2.563 1.612 33.325 1.4 1.57 2.5 1.591 35 1.5 1.553 2.447 1.576 36.708 1.6 1.535 2.403 1.566 38.446 1.7 1.517 2.365 1.559 40.211 1.8 1.5 2.333 1.556 42 1.9 1.484 2.306 1.554 43.81 2 1.468 2.282 1.552 45.639 2.1 1.453 2.261 1.556 47.485 2.2 1.439 2.243 1.559 49.346 2.3 1.425 2.227 1.563 51.22 2.4 1.412 2.213 1.567 53.105 2.5 1.4 2.2 1.571 55 Dq/B v2/v1 v3/v1 v3/v2 v3/B 2.6 1.388 2.189 1.576 56.904 2.7 1.377 2.178 1.582 58.817 2.8 1.367 2.169 1.587 60.736 2.9 1.356 2.161 1.593 62.662 3 1.347 2.153 1.599 65.493 3.1 1.338 2.146 1.604 66.53 3.2 1.329 2.14 1.61 68.471 3.3 1.321 2.134 1.616 70.416 3.4 1.313 2.128 1.621 72.365 3.5 1.305 2.123 1.627 74.318 3.6 1.298 2.119 1.632 76.273 3.7 1.291 2.114 1.638 78.232 3.8 1.284 2.11 1.643 80.192 3.9 1.278 2.107 1.648 82.155 4 1.272 2.103 1.653 84.121 4.1 1.266 2.1 1.658 86.088 4.2 1.261 2.097 1.663 88.057 4.3 1.255 2.094 1.668 90.028 4.4 1.25 2.091 1.673 92 4.5 1.245 2.088 1.677 93.974 4.6 1.24 2.086 1.682 95.949 4.7 1.236 2.084 1.686 97.925 4.8 1.231 2.081 1.69 99.902 4.9 1.227 2.079 1.695 101.881 5 1.223 2.077 1.699 103.86
  • 25. Systems with A2 ground state- d3 system ▪ Example: [Cr(H2O)6]3+ ▪ Ground term is 4A2g ▪ Three transitions expected – 4A2g  4T2g (v1) = 10Dq – 4A2g  4T1g (F) (v2) = 18Dq-x – 4A2g  4T1g (P) (v3) = 12Dq+15B’+x ▪ v1 occurs at 17,400 cm-1 ▪ v2 occurs at 24,600 cm-1 ▪ v3 occurs at 37,800 cm-1
  • 26. ▪ Considering v2/v1 = 24600 / 17400 = 1.413 ▪ From the table , for v2/v1 = 1.413 , Dq/B ‘= 2.4 ▪ From the d3 Tanabe-Sugano diagram, – For Dq/B’ = 2.4 v1/B’ = 25 B’ = 696 cm-1 ▪ If v2/v1 is used B’ value should be calculated by using v1/B’ or v2/B’ for consistency. ▪ If v3/v2 is used v3/B’ should be used to calculate B’ ▪ Dq/B’ = 2.4 ▪ Dq = 2.4 x 696 = 1670 cm-1 ▪ 10Dq = 16700 cm-1 ▪ From v2 = 18Dq –x, x is calculated as 6270 cm-1 Dq/B v2/v1 v3/v1 v3/v2 v3/B 0.1 1.799 16.211 9.062 16.21 0.2 1.777 8.273 4.909 17.446 0.3 1.764 6.236 3.535 18.708 0.4 1.75 5 2.857 20 0.5 1.735 4.265 2.458 21.325 0.6 1.719 3.781 2.199 22.685 0.7 1.702 3.44 2.021 24.083 0.8 1.685 3.19 1.893 25.521 0.9 1.667 3 1.8 27 1 1.648 2.852 1.731 28.521 1.1 1.629 2.735 1.679 30.083 1.2 1.61 2.64 1.64 31.685 1.3 1.59 2.563 1.612 33.325 1.4 1.57 2.5 1.591 35 1.5 1.553 2.447 1.576 36.708 1.6 1.535 2.403 1.566 38.446 1.7 1.517 2.365 1.559 40.211 1.8 1.5 2.333 1.556 42 1.9 1.484 2.306 1.554 43.81 2 1.468 2.282 1.552 45.639 2.1 1.453 2.261 1.556 47.485 2.2 1.439 2.243 1.559 49.346 2.3 1.425 2.227 1.563 51.22 2.4 1.412 2.213 1.567 53.105 2.5 1.4 2.2 1.571 55
  • 27. d8 system – [Ni(H2O)6]2+ •Example: [Ni(H2O)6]2+ •Ground term is 3A2g • Three transitions are observed  3A2g  3T2g (v1) = 10Dq  3A2g  3T1g (F) (v2) = 18Dq-x  3A2g  3T1g (P) (v3) = 12Dq+15B’+x  v1 occurs at 8700cm-1  v2 occurs at 14500 cm-1  v3 occurs at 25300 cm-1
  • 28. v3 /v1 = 25300/8700 = 2.9 From the table Dq/B = 0.95 v3/B = 27.755 B= 915 cm-1 Dq/B = 0.95 So Dq = 866 cm-1 10 Dq = 8660 cm-1 x = 1088 cm-1 β = 915 / 1080 = 0.8472 Dq/B v2/v1 v3/v1 v3/v2 v3/B 0.1 1.799 16.211 9.062 16.21 0.2 1.777 8.273 4.909 17.446 0.3 1.764 6.236 3.535 18.708 0.4 1.75 5 2.857 20 0.5 1.735 4.265 2.458 21.325 0.6 1.719 3.781 2.199 22.685 0.7 1.702 3.44 2.021 24.083 0.8 1.685 3.19 1.893 25.521 0.9 1.667 3 1.8 27 1 1.648 2.852 1.731 28.521 1.1 1.629 2.735 1.679 30.083 1.2 1.61 2.64 1.64 31.685 1.3 1.59 2.563 1.612 33.325 1.4 1.57 2.5 1.591 35 1.5 1.553 2.447 1.576 36.708 1.6 1.535 2.403 1.566 38.446 1.7 1.517 2.365 1.559 40.211 1.8 1.5 2.333 1.556 42 1.9 1.484 2.306 1.554 43.81 2 1.468 2.282 1.552 45.639 2.1 1.453 2.261 1.556 47.485 2.2 1.439 2.243 1.559 49.346 2.3 1.425 2.227 1.563 51.22 2.4 1.412 2.213 1.567 53.105 2.5 1.4 2.2 1.571 55