Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Enigma of 'six sigma' for foundry sm es in india

166 views

Published on

Keywords: six sigma; foundry SMEs; small and medium-sized enterprises; design of experiments; DOE; measurement system analysis; MSA; failure mode and effects analysis; FMEA; non-conforming products; cost of poor quality; hypothesis testing; defects per million opportunities; DPMO; process capability; DMAICS; analysis of variance; ANOVA; India; make-to-order foundries; scrap reduction; productivity.

Published in: Engineering
  • You have to choose carefully. ⇒ www.HelpWriting.net ⇐ offers a professional writing service. I highly recommend them. The papers are delivered on time and customers are their first priority. This is their website: ⇒ www.HelpWriting.net ⇐
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Be the first to like this

Enigma of 'six sigma' for foundry sm es in india

  1. 1. x SIX SIGMA FOUNDRY MATERIAL SCRAP REDUCTION 3.9L PISTON BY DR. BIKRAM JIT SINGH PROFESSOR GREEN BELT MMDU MULLANA MARCH 28TH 2007
  2. 2. x BUSINESS CASE In April 2006, started in the Automotive Business Unit the new part number production (81124, 3.9L piston). The foundry material scrap was 7.0% in average.
  3. 3. x OBJECTIVE Reduce the foundry material scrap from 7.0% at 2.0% maximum, in a 4 months period, with the following benefits: -Cost reduction -More machining lines availability -Less scrap re-melting -Less customer complains -$128,510.00 USD Annual savings
  4. 4. x PROJECT SCOPE In Scope: Run tests only with one dies serie (69 - 72), in order to finish in the 4 months period established. After that the rest of the dies (6 more series) will be modified according with the improvement (6 months more). Out of Scope: Other part numbers (4.8L, 5.3L, Polaris, Tecumseh and HD Skirts) Start: July 21st 2006 Stop: 1st Goal  5% Week 37 2nd Goal  3.5% Week 42 3rd Goal  2.0% Week 46
  5. 5. x GOAL STATEMENT Y= %Foundry material scrap pistons (Porosity). X1: Pouring speed X2: Robot ladles alignment X3: Die design X4: Top core design X5 Ingate design X6: Robot ladle cleanness X7: Degassing X8 Flux treatment
  6. 6. x OTHER BENEFITS More Foundry equipment availability More Machining line availability Less Customer complains (Machining, Phosphate, Assembly and GM).
  7. 7. x 6 SIGMA MAP ROAD OF PROJECTPerformance GOOD BAD 3 Sigma 6 Sigma Six Sigma Discovering Sustain Start: 16/Nov/06 Finish: Permanent Improve Start: 13/Sep/06 Finish: 11/Oct/06 Control Start: 12/Oct/06 Finish: 15/Nov/06 Analyze Start: 17/August/06 Finish: 12/Sep/06 Measure Start: 20/Ju/06 Finish: 16/Aug/06 Define Start: 06/Jun/06 Finish: 21/Jul/06
  8. 8. x PROJECT CHARTER Foundry Material Scrap Reduction, 3.9L Piston Green Belt: Víctor Espejo Reduce the foundry material scrap from 7% (9,030 pistons/month) to 2% max. (2,500 pistons/month), in 4 months. Cost reduction and more machining line availability. The piston cost = 1.64 USD/piece. Total savings per year = $128,510 USD Measurements / Objective / Target - Identify the defect - Scarp Mapping (identify the zones) - Review the ingate system - Magma modeling simulation - Design a new ingate system and run with Magama modeling. - Modify the ingate system - Test with proposal # 1 - Test with proposal # 2 - Choose the best ingate system for Puebla process Key Actions In April 2006 started the new part number production (81124, 3.9L piston), The material scrap rate average after machining is 7%. Monthly production average is 129,000 pistons. • Foundry Material Scrap Reduction, 3.9L Piston Current SituationProject Reduce the foundry material scrap from 7% (9,030 pistons/month) to 2% max. (2,500 pistons/month), in 4 months. Cost reduction and more machining line availability. The piston cost = 1.64 USD/piece. Total savings per year = $128,510 USD Measurements / Objective / Target - Identify the defect - Scarp Mapping (identify the zones) - Review the ingate system - Magma modeling simulation - Design a new ingate system and run with Magama modeling. - Modify the ingate system - Test with proposal # 1 - Test with proposal # 2 - Choose the best ingate system for Puebla process Key Actions In April 2006 started the new part number production (81124, 3.9L piston), The material scrap rate average after machining is 7%. Monthly production average is 129,000 pistons. • Foundry Material Scrap Reduction, 3.9L Piston Current SituationProject Current ResourcesObstacles for success: 4 Months Implementation Time £ 4,520.00 Only for two die blocks series for the test Total 7 series (5 series for improvement implementation) Resources / Costs for Implementation See team members chart $ Members required for implementation Difficult Grade Impact Value Current ResourcesObstacles for success: 4 Months Implementation Time £ 4,520.00 Only for two die blocks series for the test Total 7 series (5 series for improvement implementation) Resources / Costs for Implementation See team members chart $ Members required for implementation Difficult Grade Impact Value Priority:
  9. 9. x PROCESS MAP CONSTRUCTION Step 5: F A B B,C C D E J,K,L I H G Steps 10.- Die preparation Input Classification 20.- Ingots transportation to foundry Critic 30.- Ingots storage (in Cell) Controlled 40.- Furnace charge Noise 50.- Melting 60.- Degassing and flux treatment A.- Die coating 70.- Holding time and impurity flotation B.- Furnace charge relation 80.- Start up casting cell machine C.- Molten metal temperature 90.- Pouring D.- Density Index (ID) 100.- Croppers E.- Cycle time 110.- AQFD F.- Pouring speed 120.- Visual inspection and baskets accommodation G.- AQFD 130.- Storage before heat treatment H.- Without visual defects 140.- Heat Treatment I.- Aging 150.- Q.A. Release J.- Microstructure 160.- Transportation to release material area K.- Hardness 170.- Storage before machining L.- Chemical analysis Write Down and Classify the Key Process Input CTQ's 10 20 30 40 50 60 ID=1,5 max. Si No 70 80 90 100 110120130 Si No Scrap 130140150 Si No Scrap 160 170 Die temperature Die coating density Spray gun Free of humidity Free of slag Charge relation (60 Ingot /40 scrap) Temperature Metal Temp. N2 Flow RPM Time Time Water cooling system Cycle time Pouring speed Ladle cleaning Metal temperature Die Coating Water cooling time Water coling temp. Ingate separation AQFD Free of visual defects Separate in baskets by cavity Temperature Time Chemical Analysis Microstructure Hardness Q.A. Release card 10 20 30 40 50 60 ID=1,5 max. Si No 70 80 90 100 110120130 Si No Scrap 130140150 Si No Scrap 160 170 10 20 30 40 50 60 ID=1,5 max. Si No 70 80 90 100 110120130 Si No Scrap 130140150 Si No Scrap 160 170
  10. 10. x PROCESS MAP CONSTRUCTION Step 7: F A B B,C C D E J,K,L I H G Ingots transportation to foundry Pistons waiting for heat treatment Heat treated pistons transportation Pinstons stock for machining Steps with out value 10 20 30 40 50 60 ID=1,5 max. Yes No 70 80 90 100 110120130 Yes No Scrap 130140150 Yes No Scrap 160 170 Die temperature Coating Density Spray gun Free of humidity Free of slag Charge relation (60% Ingot / 40% scrap) Temperature Metal Temp. N2 Flow RPM Time Time Water cooling system Cicle time Pouring speed Ladle cleanning Metal temperature Die coating Water cooling time Water cooling temp. Ingate separation AQFD Free of defects Separate in baskets per cavity Temperature Time Chemical Analysis Microestructure Hardness Q.A. Release card
  11. 11. x 1,2% 1,0% PIEZAS 12789 BASE 9´05 DIC ' 05 SEM 23 SEM 24 SEM 25 SEM 26 SEM 27 PR/SEM ACUM. 8.601 36.501 50.075 34.706 53.764 0 35.009 175.046 495 2.625 3.291 2.076 4.797 0 2.558 12.789 5,44% 6,71% 6,17% 5,64% 8,19% #¡DIV/0! 6,81% 6,81% [#] [PCS] [#] [PCS] 1 11430 8 0 2 889 9 0 3 381 10 0 4 54 11 0 5 16 12 0 6 14 13 SCRAP [%] OBJETIVO 7 5 14 1,2% 1,0% BASE 9´05 ENE ' 06 FEB ' 06 MAR ' 06 ABR ' 06 MAY ' 06 JUN ' 06 8.601 39.063 175.046 495 3.351 12.789 5,44% 7,90% 6,81% SCRAP [%] OBJETIVO ACUM. 214.109 16.140 7,01%SCRAP [%] SCRAP DE FUNDICION EN MAQUINADO SCRAP DE FUNDICION EN MAQUINADO 6,81% RECHAZO [PZAS] SCRAP [%] PROD. NETA OK [PZAS] RECHAZO [PZAS] PROD. NETA OK [PZAS] @SEM 26 JUNIO '2006 INCLUSIONES GOLPES PINTURA PROBLEMA SCRAP EN FOSFATO PIP DAÑADO GAS RECHUPES (Gate) REBABA O FLASH AIRE ATRAPADO OXIDOS RECHUPES (Back) METAL PEGADO SCRAP DE FUNDICION EN MAQUINADO 81124 (3,9L) PROBLEMA PARETO DE RECHAZOS META @ JUN' 06 META @ DIC' 05 META @ JUN' 06 META @ DIC' 05 5,44% 6,71% 6,17% 5,64% 8,19% 0,00% 6,81% 0,0% 1,0% 2,0% 3,0% 4,0% 5,0% 6,0% 7,0% 8,0% 9,0% 10,0% BASE 9´05 DIC ' 05 SEM 23 SEM 24 SEM 25 SEM 26 SEM 27 PR/SEM 11430 889 381 54 16 14 5 0 0 0 89% 96% 99% 100% 100% 100% 100% 100% 100% 100% 0 2000 4000 6000 8000 10000 12000 14000 84% 86% 88% 90% 92% 94% 96% 98% 100% 102% 5,44% 7,90% 6,81% 7,01% 0,0% 2,0% 4,0% 6,0% 8,0% 10,0% BASE 9´05 ENE ' 06 FEB ' 06 MAR ' 06 ABR ' 06 MAY ' 06 JUN ' 06 ACUM. New piston 3,9L (81124) Foundry Material Scrap Pareto 3.9L Piston (81124)
  12. 12. x 5M DIAGRAM Method Medio ambiente (Enviroment) Materials Turbulence during pouring High humidity Dirty ingots from supplier Pouring interrupted Water leaks on dies Metal temperature too high Ladel drying Too much dust in the building Liquid metal level high, it touch the furnace iron ring Aluminum in the pouring bush Metal contamination from ceramic fiber from the lids Poor molten metal treatment Poor scrap conditions from other areas Poor ladle cleaning Incorrect molten metal surface skimming Slow pouring speed Molten metal regassing Ladle alignment Manpower Machinery Poor metal cleaning practices Dirty ladle during pouring Furnace lids are open all the time Ingate width too wide Poor die coating conditions on cell Die design Poor piston defects inspection Ingate design Die conditions Deskulling box in bad conditions Dirty crucibles Robot aborts Top core design Poor die venting Turbulence during metal transportation (robot) Robot scooping during ladle filling Foundry Material Scrap (3.9L Piston)
  13. 13. x CAUSE – EFFECT MATRIX (80/20) Critic Control Noise 10 8 6 5 3 4 3 3 3 2 3 4 5 6 7 8 9 10 AirBubbles Misrun Weeping Coating HitandDamages pipdamage Hydrogen porosity Warmers Shrinkage Total Process Step Process Input 11 Set up Die coating 7 8 4 10 6 8 9 283 5 Set up Die preheating 8 9 8 8 216 14 Set up Water cooling connections 5 8 9 6 8 210 1 Pouring Low pouring speed 10 8 5 179 2 Design Ingate 10 7 6 174 10 Pouring Water cooling temperature too low 7 10 7 171 3 Pouring Water cooling time too short 9 9 7 165 18 Pouring Ladles alignment 9 7 6 164 8 Pouring Molten metal temperature too low 8 8 6 162 13 Design Blocks and cores 6 6 4 6 150 9 Pouring Water cooling temperature too high 8 8 7 149 15 Pouring Water cooling time too long 4 10 8 144 6 Pouring Molten metal temperature too high 8 6 5 4 143 4 Design Top core 9 5 6 128 Total 1310 728 270 90 18 76 87 171 237 3108 Correlation of Input to Output Rating of Importance to Customer Characteristic Cause and Effect Matrix for Foundry
  14. 14. x AMEF Numero: FD 60 Pouring High Pouring speed Over pour, incomplete pieces, down time 4 Wrong robot adjustment during pouring 4 Password to robot program Visual 6 96 New passwords controlled only by team leaders O. Cruz Week 34 2006 Set new passwords 4 2 6 48 FD 60 Pouring Low pouring speed Turbulences 4 Wrong robot adjustment during pouring 4 Password to robot program Visual 6 96 New passwords controlled only by team leaders O. Cruz Week 34 2006 Set new passwords 4 2 6 48 FD 60 Pouring Ladles disalignment Over pour, incomplete pieces, down time, turbulences 4 Wrong robot ladles adjustment, wrong robot adjustment during metal pick up and pouring 3 Robot alignment every ladles change and set the password to the program Visual 6 72 Device to verify ladles alignment and height after maintenance R. Avila Week 38 2006 FD 60 Pouring Ingate design Porosity by air trapped and oxides 6 Air aspiration and turbulences 3 Verify scrap after machining 7 126 Magma simulation for new designs Víctor Espejo Week 38 2006 Modify tooling with supplier 6 1 4 24 FD 60 Pouring Robot arm disalignment Over pour, incomplete pieces, down time 4 Robot arm disalignment, screw loose and robot crash 4 Visual 7 112 Screw adjustments every PM J. López Week 36 2006 Robot PM every month (program) 4 3 6 72 N. P. R. Actions recommended Responsible y Due date Action done results Action done S E V O C U D E T N P R O C U R Current Process Controls PREVENTION Current Process Controls DETECTION D E T Nombre de Parte / Descripción GM 5.3L Fijo, GM 3.5L, GM 5.3L Perno Flotante, GM 3.9L, GM 4.8L; TECUMSEH Ref. No. Process description Failure Mode Effect potential failure S E V C L A S E Cause / Mechanism Potential Failure Numero de Parte / Ultima versión del cambio Equipo Central Otras Aprobaciones / Si es necesario 81030C(5.3L GM) 81063C(3.5L GM) 81064G(5.3L Flot GM) 81124 (3.9L GM) 81094 (4.8L GM) 80094 (Tecumseh) B2 R005 R005 R001 R003 R C V. Espejo, O. Cruz, M. Hernández,E. Miranda, O. Rodríguez, R. Avila, A Farfan. No. de revisión Eric Miranda M. (222) 4043100 ext 210 13-Jul-02 07-Ago-06 11AMFD-01 Contacto / No. Telefono Fecha (Emisión) Fecha (Rev.) FAILURE MODE EFFECT ANALYSIS ( PROCESS FMEA )
  15. 15. x Capability Study Automatic Sigma Calculator Attribute Data Total Defects 2768 # of opportunities 3 Total units 26255 These are your defects (dpmo) 35143 These are the DPU 0,1054 232,6 Zbench 3,3101 This is the value of sigma in your process Entitlement (defects) 18 Color code Not capable Borderline Capable Air Trapped (90%) Oxide (7%) Shrinkage (3%) Scrap 2768 2491 194 83 2768 Machined parts 26255 %Scrap 10.5% Production Results Week 32
  16. 16. x % Appraiser 0,0% 10,0% 20,0% 30,0% 40,0% 50,0% 60,0% 70,0% 80,0% 90,0% 100,0% 110,0% Zully "Q.A." 0 0 %Efficiency 95% UCL Calculated Score 95% LCL % Score vs Appraiser 0,0% 10,0% 20,0% 30,0% 40,0% 50,0% 60,0% 70,0% 80,0% 90,0% 100,0% 110,0% Zully "Q.A." 0 0 %Efficiency 95% UCL Calculated Score 95% LCL Measurement System Evaluation
  17. 17. x Hypothesis Test Datas Type: Continuous X1 Pouring speed (Fast and slow) *Discrete X2 Ingate design (Ingate area, only 2 sizes) **Discrete X3 Ladle alignment (Alignment and Not alignment) Discrete X4 "Top Core" Design (Modified and Not modified) Discrete Ho Not relation, Not difference Ha Relation, Difference * Pouring speed from 3,00 sec to 4,50 sec. ** Ingate areas average: 135 mm 2 y 165 mm 2 Critics X's for Y's % Machining pistons with foundry defects (Porosity) Y
  18. 18. x Hypothesis 1: 1.- The feeding area in the dies (“Ingates”), affect to the scrap by porosity, the ingates are not well calculated in the design. Y = % Scrap after machining (Foundry porosity). (Continuous) X = Ingate design (Feeding area: 135mm2 y 165mm2). (Discrete) Ho = There is not relationship between ingate design and % scrap Ha = There is relationship between ingate design and % scrap 300 pistons per cavity 130 - 140 160 - 170 69 8.4% 12.2% 70 8.4% 20.9% 71 2.8% 11.0% 72 3.4% 10.4% 69 9.7% 70 8.0% 71 4.2% 72 11.1% Cavity Area (mm2)
  19. 19. x %Scrap Percent 2520151050-5 99 95 90 80 70 60 50 40 30 20 10 5 1 Mean 9,688 StDev 5,664 N 8 AD 0,371 P-Value 0,328 Probability Plot of %Scrap Normal Area 95% Bonferroni Confidence Intervals for StDevs 165 135 2520151050 Area %Scrap 165 135 2015105 Test Statistic 0,39 P-Value 0,461 Test Statistic 0,02 P-Value 0,902 F-Test Levene's Test Test for Equal Variances for %Scrap Hypothesis Test. One Way Anova. Ingates Design Vs %Scrap Data Area 165Area 135 20 15 10 5 Individual Value Plot of Area 135; Area 165 Data Area 165Area 135 20 15 10 5 Boxplot of Area 135; Area 165
  20. 20. x One-way ANOVA: Area 135; Area 165 Source DF SS MS F P Factor 1 124,0 124,0 7,40 0,035 Error 6 100,5 16,8 Total 7 224,5 S = 4,093 R-Sq = 55,24% R-Sq(adj) = 47,78% Individual 95% CIs For Mean Based on Pooled StDev Level N Mean StDev ---------+---------+---------+---------+ Area 135 4 5,750 3,070 (----------*---------) Area 165 4 13,625 4,907 (---------*---------) ---------+---------+---------+---------+ 5,0 10,0 15,0 20,0 Pooled StDev = 4,093 Hypothesis Test. One Way Anova. Ingates Design Vs %Scrap Conclusion: Discard Ho, Accept Ha.
  21. 21. x Hypothesis 2: 2.- The robot ladles alignment to pour metal into the dies, affect the scrap rate, should be alignment respect to the pouring bush. Y = Foundry material scrap (Foundry porosity). (Continuous) X = Ladles alignment (Alignment and non alignment). (Discrete) Ho = There is not relationship between ladles alignment and % scrap Ha = There is not relationship between ladles alignment and % scrap 300 pistons per cavity Alignment Non Alignment 69 0.00 5.43 70 0.63 5.00 71 2.03 3.60 72 1.53 3.00 69 0.70 2.12 70 2.20 3.53 71 1.25 1.22 72 0.00 0.75 Robot Ladles (%Scrap) Cavity
  22. 22. x Hypothesis Test. One Way Anova. Ladle Alignment Vs %Scrap %Scrap A. Percent 6543210-1-2 99 95 90 80 70 60 50 40 30 20 10 5 1 Mean 2,062 StDev 1,657 N 16 AD 0,422 P-Value 0,283 Probability Plot of %Scrap A. Normal Alineacion 95% Bonferroni Confidence Intervals for StDevs 1 0 4,03,53,02,52,01,51,00,5 Alineacion %Scrap A. 1 0 6543210 Test Statistic 0,26 P-Value 0,096 Test Statistic 2,82 P-Value 0,115 F-Test Levene's Test Test for Equal Variances for %Scrap A. Data No AlineadoAlineado 6 5 4 3 2 1 0 Boxplot of Alineado; No Alineado Data No AlineadoAlineado 6 5 4 3 2 1 0 Individual Value Plot of Alineado; No Alineado
  23. 23. x One-way ANOVA: Alineado; No Alineado Source DF SS MS F P Factor 1 16,63 16,63 9,48 0,008 Error 14 24,56 1,75 Total 15 41,18 S = 1,324 R-Sq = 40,37% R-Sq(adj) = 36,11% Individual 95% CIs For Mean Based on Pooled StDev Level N Mean StDev +---------+---------+---------+--------- Alineado 8 1,043 0,850 (--------*-------) No Alineado 8 3,081 1,669 (--------*-------) +---------+---------+---------+--------- 0,0 1,2 2,4 3,6 Pooled StDev = 1,324 Hypothesis Test. One Way Anova. Ladle Alignment Vs %Scrap Conclusion: Discard Ho, Accept Ha.
  24. 24. x Hypothesis 3: 3.- A Top Core modification to increase the material in the crown to be eliminated in the machining line, will be to decrease the scrap porosity around the pockets. Y = Foundry material scrap (Foundry porosity). (Continuous) X = “Top Core” Design (Modified and Non modified). (Discrete) Ho = There is not relationship between “Top Core” design and % scrap Ha = There is relationship between “Top Core” design and %scrap 300 pistons per cavity Modified Non Modified 1.18 3.00 0.51 1.90 4.17 1.27 1.75 1.20 1.19 1.90 2.82 4.56 5.71 5.40 Top core Cavity (69)
  25. 25. x Hypothesis Test. One Way Anova. Top Core Design Vs %Scrap %Scrap top Percent 76543210-1-2 99 95 90 80 70 60 50 40 30 20 10 5 1 Mean 2,611 StDev 1,706 N 14 AD 0,684 P-Value 0,058 Probability Plot of %Scrap top Normal Topcore 95% Bonferroni Confidence Intervals for StDevs 1 -1 54321 Topcore %Scrap top 1 -1 6543210 Test Statistic 0,77 P-Value 0,764 Test Statistic 0,06 P-Value 0,812 F-Test Levene's Test Test for Equal Variances for %Scrap top Data %Scrap top_2%Scrap top_1 6 5 4 3 2 1 0 Individual Value Plot of %Scrap top_1; %Scrap top_2 Data %Scrap top_2%Scrap top_1 6 5 4 3 2 1 0 Boxplot of %Scrap top_1; %Scrap top_2
  26. 26. x One-way ANOVA: %Scrap top_1; %Scrap top_2 Source DF SS MS F P Factor 1 0,26 0,26 0,08 0,779 Error 12 37,57 3,13 Total 13 37,83 S = 1,769 R-Sq = 0,68% R-Sq(adj) = 0,00% Individual 95% CIs For Mean Based on Pooled StDev Level N Mean StDev -------+---------+---------+---------+-- %Scrap top_1 7 2,747 1,653 (-----------------*------------------) %Scrap top_2 7 2,476 1,878 (-----------------*-----------------) -------+---------+---------+---------+-- 1,60 2,40 3,20 4,00 Pooled StDev = 1,769 Hypothesis Test. One Way Anova. Top Core Design Vs %Scrap Conclusion: Accept Ho, Discard Ha.
  27. 27. x Levels Response Variables Constants Noise Variables Equipments and measurement instruments Experimental Unit DOE Type 30 & 45 3,5 & 4,0 Factorial Experiment 2x2x2x2 = 24 16 pouring. 4 repetitions Die Coating Ladel coating Ceramic inserts in good conditions Water Cooling Time in Center Core (seg) Factors 3. Piston 3,9L Part Number 81124Cycle Time = 83 seg. Chemicla Analysis (same furnace) Water cooling connections Visual Inspection. Visual Aid FAC-003- 001 Rev. 4Pouring speed (seg) 4. DOE Same foundry cell Degassing (ID = 1,5 máx.) 1. Metal Temperature (°C) 2. Water Cooling Temp. (°C) 2% Scrap max. 18 & 30 770 y 790
  28. 28. x Interactions (A) Center Core water Cooling Time (°C) (B) Pouring Speed (seg) (C) Water Cooling Temperature (°C) (D) Metal Temperature (°C) (1) 30 3.5 18 770 a 45 3.5 18 770 b 30 4.0 18 770 ab 45 4.0 18 770 c 30 3.5 30 770 ac 45 3.5 30 770 bc 30 4.0 30 770 abc 45 4.0 30 770 d 30 3.5 18 790 ad 45 3.5 18 790 bd 30 4.0 18 790 abd 45 4.0 18 790 cd 30 3.5 30 790 acd 45 3.5 30 790 bcd 30 4.0 30 790 abcd 45 4.0 30 790 DOE Same DOE for both series: 65 – 68 Choke Section & 77 – 80 Permanent Filter
  29. 29. x Trials Results & Savings Víctor Espejo
  30. 30. x Cell #: 4 Station #: 8 Machining Line #: 1 Shift: Mach. Date: Die Cavity Qty m/ced No. Scrap %Scrap Die Cavity Pairing Total Qty m/ced Total No Scrap Total Pair % Scrap 3 Blow Holes 1 Oxide Inc. 1 Shrinkage 9 Blow Holes 2 Oxide Inc. 0 Shrinkage 7 Blow Holes 2 Oxide Inc. 0 Shrinkage 10 Blow Holes 0 Oxide Inc. 0 Shrinkage Total Trial 5104 35 0.69% 870 9 10 0.95% 1.15% FM Puebla Foundry 3,9L Piston 81124 Scrap Results Basket #: "Casting Trials" Choke Section. New Downsprue: dd/mm/yy Cav 67 0.80%1129 16 67 & 68 1999 19 11 0.74% Cav 68 Scrap Defects 0.52% Cav 65 1615 5 0.31% 65 & 66 3105 Cav 66 1490 In-Gate trials Results. Current Process Conditions
  31. 31. x In-Gate trials Results. Current Process Conditions Cell #: 4 Station #: 8 Machining Line #: 1 Shift: Mach. Date: Die Cavity Qty m/ced No. Scrap %Scrap Die Cavity Pairing Total Qty m/ced Total No Scrap Total Pair % Scrap 7 Blow Holes 0 Oxide Inc. 0 Shrinkage 8 Blow Holes 0 Oxide Inc. 1 Shrinkage 7 Blow Holes 1 Oxide Inc. 0 Shrinkage 16 Blow Holes 0 Oxide Inc. 0 Shrinkage Total Trial 5574 40 0.72% 1937 8 16 0.76% 0.83% FM Puebla Foundry 3,9L Piston 81124 Scrap Results Basket #: "Casting Trials" Permanent Filter Ingate: dd/mm/yy Cav 79 0.66%1215 16 63A & 64A 3152 24 9 0.75% Cav 80 Scrap Defects 0.66% Cav 77 1214 7 0.58% 61A & 62A 2422 Cav 78 1208
  32. 32. x September October November December January February March April May June July August September Octubre 140087 150165 147450 172582 184578 70171 127678 143730 9806 10512 10322 12081 12920 4912 8937 10061 $16,082 $17,239 $16,927 $19,812 $18,605 $7,073 $12,870 $14,488 6404 4457 7076 5379 5804 1932 1912 4108 $10,503 $7,309 $11,605 $8,822 $8,358 $2,782 $2,753 $5,916 $5,579 $9,929 $5,323 $10,991 $10,248 $4,291 $10,117 $8,572 $65,050 * % Scrap average (7%) Scrap parts after improvement Scrap Cost = 1.64 USD / piece SAVINGS TABLE SIX SIGMA - FOUNDRY MATERIAL SCRAP REDUCTION. PISTON 3.9L Accumulated Total Savings (USD) Scrap costs after improvement (USD) Totales Savings (USD) Period 2006 - 2007 Machined Parts *Scrap pieces before improvement (7%) Scrap costs before improvement (USD) Material Scrap 81124 (3,9L) After Machining, 2006 - 2007 5.4 1.7 2.3 0.4 1.2 2.7 5.3 5.9 2.1 5.4 8.0 7.1 8.3 6.7 6.2 5.6 8.2 10.710.6 9.7 14.0 14.3 11.3 10.5 7.3 9.8 8.3 2.7 3.23.0 3.3 2.72.6 3.53.5 4.5 4.84.74.6 3.2 2.5 3.63.5 2.4 2.0 4.5 3.8 3.2 2.5 2.12.2 1.5 1.0 1.51.5 2.82.72.92.7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-Ago-05 26-Ago-05 05-Sep-05 15-Sep-05 25-Sep-05 05-Oct-05 15-Oct-05 25-Oct-05 04-Nov-05 14-Nov-05 24-Nov-05 04-Dic-05 14-Dic-05 24-Dic-05 03-Ene-06 13-Ene-06 23-Ene-06 02-Feb-06 12-Feb-06 22-Feb-06 04-Mar-06 14-Mar-06 24-Mar-06 03-Abr-06 13-Abr-06 23-Abr-06 03-May-06 13-May-06 23-May-06 02-Jun-06 12-Jun-06 22-Jun-06 02-Jul-06 12-Jul-06 22-Jul-06 01-Ago-06 11-Ago-06 21-Ago-06 31-Ago-06 10-Sep-06 20-Sep-06 30-Sep-06 10-Oct-06 20-Oct-06 30-Oct-06 09-Nov-06 19-Nov-06 29-Nov-06 09-Dic-06 19-Dic-06 29-Dic-06 08-Ene-07 18-Ene-07 28-Ene-07 07-Feb-07 17-Feb-07 27-Feb-07 09-Mar-07 19-Mar-07 29-Mar-07 08-Abr-07 18-Abr-07 28-Abr-07 08-May-07 18-May-07 28-May-07 07-Jun-07 17-Jun-07 27-Jun-07 07-Jul-07 17-Jul-07 27-Jul-07 06-Ago-07 16-Ago-07 26-Ago-07 05-Sep-07 15-Sep-07 25-Sep-07 05-Oct-07 15-Oct-07 25-Oct-07 04-Nov-07 14-Nov-07 24-Nov-07 04-Dic-07 14-Dic-07 24-Dic-07 03-Ene-08 Week %Scrap Choke section improvement in the current ingate desing New ingate design, choke section & permanent filter firts trials (only 2 series) New ingate design, choke section & permanent filter out of service (maintenance) New ingate design, choke section & permanent filter second trials Final test & decided to modify all the ingates with the choke section Dacmac quotation on track, anvilloy insert and final modification. Planned time one serie per month. Goal = 2.0%
  33. 33. x Capability Study Automatic Sigma Calculator Attribute Data Total Defects 2768 # of opportunities 3 Total units 26255 These are your defects (dpmo) 35143 These are the DPU 0,1054 232,6 Zbench 3,3101 This is the value of sigma in your process Entitlement (defects) 18 Color code Not capable Borderline Capable Automatic Sigma Calculator Attribute Data Total Defects 4457 # of opportunities 3 Total units 150165 These are your defects (dpmo) 9893.6 These are the DPU 0.0297 232.6 Zbench 3.8304 This is the value of sigma in your process Entitlement (defects) 104 Color code Not capable Borderline Capable Z Original Z Improved
  34. 34. x Conclusions: -The new in-gates design (both choke section and permanent filter), reduce and stabilize the scrap trend by air bubbles. -The additional benefit is the misruns reduction due to high pouring speed. Project Status: -4 set of dies are already modified (total 7 dies set) -Process control should be improved, die coating, pouring conditions and ladle cleaning (oxide problems increase).
  35. 35. x Defect Characterization & Magma Simulation Mel Jones
  36. 36. x Current In-Gate System. Proposal In-Gate System.
  37. 37. x PERMANENT FILTER IN-GATE TRIALS Background • New in-gate design needed to reduce turbulence during die filling • More quiescent fill of the die leads to less fine oxide generation during piston casting and should give better low temperature fatigue properties for the piston alloy – particularly important for gasoline pistons New in-gate design now in production at FM Nürnberg
  38. 38. x Filter pins on both sides of the block to help stripping of casting Permanent filter is designed for global standard twin cavity gasoline piston die
  39. 39. x 11Data classification: Internal mm/dd/yyyyFunction / BU name Permanent filter Verlauf KP - 9044 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 Jan Feb Mrz Apr Mai Jun Jul Aug Monat Auschußin% 0
  40. 40. x CONTROL PLAN PUEBLA PISTONS Apr. del CliProducción (Si es necesario): Prototipo Pre-Lanzamiento Producción Contacto/Telefono Fecha (Orig.) Fecha (Rev.) No. de Revisión Plan de Control Número: WBGM-FD01 26-Abr-06 4 Número de Parte Nivel de Ingeniería Nombre de la Parte/Descripcion Miembros del Equipo: No. Size Frec. FD50 Start up cell Foundry cell Cell conditions See FFD-02 Visual 1 Daily Quality and Production check list FFD-02 Set up parameters. DPS-6 Foundry cell Pouring height (ladle adjustment) 1.0 a 2.0 cm from the pouring bush Rule 1 Every ladle change Maintenance check list Stop production and fix the height Foundry cell Ladle alignment Straight respect to pouring bush squadron guide 1 Every ladle change Maintenance check list Stop production and align the ladles FD60 Pouring Casting station Metal temperature 780°C ± 10°C Handle pyrometer / Control panel PI-D-FD-xx 1 Every 2 hrs FFD-01 Production Stop cell and fix parameters, separate product Robot Motoman Pouring speed 4.0 sec. Max. Cronometer 1 Daily or every cell start up Quality and Production check list FFD-02 Robot program adjustment Casting cell Water cooling system 20 - 29 °C Temperature sensor 1 Every 4 hrs Production check list FFD-02 Stop cell and fix parameters Water flow Visual 1 Daily or every cell start up Quality and Production check list FFD-02 Stop cell and fix parameters Characteristic EqupmentProcess decription Part number / Operation Spec. Special Charact. ProcessProduct Reaction Plan Control method Sample Evaluation tchnique or method Method 14-Jul-02ERIC MIRANDA (01)(222) 404-3100 PC81030C, PC81064G (AFA06072), PC81063C (AFA06122), PC81124C (AHS29361), PC81094C (AHS13044) B2/R005 R005 / R001 R003 PISTÓN FUNDIDO 5.3L & 5.3L FLOTANTE PISTÓN FUNDIDO 3.5L, PISTÓN FUNDIDO 3.9L PISTÓN FUNDIDO 4.8L A. TORIJA, O RODRIGUEZ, V ESPEJO, S LOPEZ, M HERNANADEZ
  41. 41. x Measurement System Validation (X’s) X´s (Variables) Controlled by Validation Restreability Location PI-D-FD-22 Cell 1 PI-D-FD-23 Cell 2 PI-D-FD-24 Cell 3 PI-D-FD-29 Cell 4 Handle Pyrometer Calibration PI-D-FD-07 Control Panel Pyrometer Calibration PI-D-FD-XX 12 Control Panels Water Cooling Time Casting Stations Timers 8 Casting Stations Water Cooling Temperature Fix Thermocouple and Pyrometer Calibration Metal Temperature

×