Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Some Facts about Agriculture in 
LAC 
• LAC- < 10% world’s population (600 mil). 
• 23% arable land, 46% tropical forests,...
HHiillllssiiddeess:: 
QQuueessuunngguuaall SSllaasshh aanndd MMuullcchh AAggrrooffoorreessttrryy SSyysstteemm 
((QQSSMMAAS...
No slash & burn 
Management (partial, selective, and progressive slash-and-prune) 
of natural vegetation 
Permanent soil c...
• Honduras: 
–– CCrroopp pprroodduuccttiivviittyy:: 
mmaaiizzee ⇧⇧4422%%,, 
ccoommmmoonn bbeeaann 
⇧⇧3388%% 
• Nicaragua: ...
• QSMAS farms: 
– Relatively low emission of nitrous oxide (N2O) 
– Sink for methane (CH4) 
– C sequestration (SOC) 
equiv...
SSaavvaannnnaass:: 
CCrroopp--lliivveessttoocckk 
ssyysstteemmss
grass-legume 
pasture 
5000 
-5000 
-15000 
-25000 
forest savanna sandy 
savanna 
crops 
grass 
alone 
pasture 
GWP (kg C...
Cumulative nitrous oxide emissions ffrroomm ffiieelldd 
pplloottss ooff ttrrooppiiccaall ppaassttuurree ggrraasssseess 
((...
Optimization and characterization of Fruit 
production systems
Optimization and 
characterization of production 
systems
Life cycle analysis (or eco-balance): 
 Assesses the environmental profile of a production system or a food 
production ch...
Carbon footprint of fruit production systems in Colombia 
Mora (Rubus glaucus) 
Area cultivated: 10,743 ha 
Yield: 8.7 t h...
Carbon footprints of Mora and Guanabana production systems calculated 
as CO2 equivalents 
4,000 
3,000 
2,000 
1,000 
4,0...
Carbon footprint of 
bioethanol production from 
banana and cooking banana 
discard (Costa Rica, Ecuador) 
Comparison of t...
rendimiento bananas 
rendimiento 
numero de plantas 
peso de racimo 
cantidad desechos 
desechos 
porcentaje desecho 
area...
Table 2. Production data for the Ecuador case studies. 
Organic farms (Chimborazo- 
Guayas) 
Conventional 
farms 
(Guayas)...
Carbon emissions during bioethanol life cycle 
 C costs of bioethanol 
production from conventional 
banana producers are ...
Avoided C emissions of bioethanol from Musa discard 
 All three bioethanol production 
systems yielded avoided C emission,...
Upcoming SlideShare
Loading in …5
×

A Gonzales quesungual slash and mulch agroforestry july 2010

521 views

Published on

Published in: Science
  • Be the first to comment

  • Be the first to like this

A Gonzales quesungual slash and mulch agroforestry july 2010

  1. 1. Some Facts about Agriculture in LAC • LAC- < 10% world’s population (600 mil). • 23% arable land, 46% tropical forests, 31% water. • LAC >>>> potential as global food supplier. • > Biophysical Mitigation Potential to largest in LAC and SE Asia • Major Agroecosystems: – Hillsides (96 Mha) – Tropical Savannas (250 Mha) – Forest Margins (44 Mha)
  2. 2. HHiillllssiiddeess:: QQuueessuunngguuaall SSllaasshh aanndd MMuullcchh AAggrrooffoorreessttrryy SSyysstteemm ((QQSSMMAASS))
  3. 3. No slash & burn Management (partial, selective, and progressive slash-and-prune) of natural vegetation Permanent soil cover Continual deposition of biomass from trees, shrubs and weeds, and through crop residues Minimal disturbance of soil No tillage, direct seedling, and reduced soil disturbance during agronomic practices Efficient use of fertilizer Appropriate application (timing, type, amount, location) of fertilizers
  4. 4. • Honduras: –– CCrroopp pprroodduuccttiivviittyy:: mmaaiizzee ⇧⇧4422%%,, ccoommmmoonn bbeeaann ⇧⇧3388%% • Nicaragua: –– NNeett iinnccoommee mmaaiizzee ++ ccoommmmoonn bbeeaann == ⇧⇧8833%% ((vvss.. SSBB)) Grain yield (kg ha-1) 2 0 0 0 1 8 0 0 1 6 0 0 1 4 0 0 1 2 0 0 1 0 0 0 8 0 0 6 0 0 4 0 0 2 0 0 0 M a iz e C om m o n b e a n s &S lBausrhn QS-MFAS QS+MFAS -1 ) Grain yield (t ha 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 Maize Common bean DMS0.05= ns DMS0.05= 0.43 &S lBausrhn QS+MFAS
  5. 5. • QSMAS farms: – Relatively low emission of nitrous oxide (N2O) – Sink for methane (CH4) – C sequestration (SOC) equivalents ha-1 y-1) 2 GWP (kg CO Slash and Burn QSMAS Secondary Forest 50000 40000 30000 20000 10000 0 42% • Global Warming Potential (GWP) where QSMAS is practiced: – 12 municipalities, 67,000 inhabitants – 1143 km²
  6. 6. SSaavvaannnnaass:: CCrroopp--lliivveessttoocckk ssyysstteemmss
  7. 7. grass-legume pasture 5000 -5000 -15000 -25000 forest savanna sandy savanna crops grass alone pasture GWP (kg CO2 equivalents) GWP20y GWP100y IInntteeggrraatteedd GGlloobbaall WWaarrmmiinngg PPootteennttiiaall ((GGWWPP)) ooff ddiiffffeerreenntt llaanndd uusseess iinn tthhee ssaavvaannnnaass ooff CCoolloommbbiiaa ((RRoonnddoonn eett aall..,, 22000066))
  8. 8. Cumulative nitrous oxide emissions ffrroomm ffiieelldd pplloottss ooff ttrrooppiiccaall ppaassttuurree ggrraasssseess ((mmoonniittoorreedd mmoonntthhllyy ffrroomm 22000055--22000088)) 500 450 400 350 300 250 200 150 100 50 0 Bare Soil Soybean P.maximum Hybrid Mulato Bh 679 Bh 16888 mg N2O-N m-2 y-1
  9. 9. Optimization and characterization of Fruit production systems
  10. 10. Optimization and characterization of production systems
  11. 11. Life cycle analysis (or eco-balance): Assesses the environmental profile of a production system or a food production chain along the whole life cycle of a product. Quantifies its resource use and aims to identify significant areas of environmental impact. Allows for a better understanding of how to reduce the environmental impact and to increase the sustainability of products and/or farming systems. Energy and carbon footprints are important sustainability indicators of production systems
  12. 12. Carbon footprint of fruit production systems in Colombia Mora (Rubus glaucus) Area cultivated: 10,743 ha Yield: 8.7 t ha-1 yr-1 2500 plants ha-1 Economical life: 3 years Nutrient inputs (kg ha-1 yr-1) N: 140 – 233 P: 90 – 170 K: 80 – 160 Guanabana (Annona muricata) Area cultivated: 2,395 ha Yield: 9.0 t ha-1 yr-1 ~ 240 trees ha-1 Economical life: 10 yrs Nutrient inputs (kg ha-1 yr-1) N: 30 - 80 P: 10 - 30 K: 15 – 40
  13. 13. Carbon footprints of Mora and Guanabana production systems calculated as CO2 equivalents 4,000 3,000 2,000 1,000 4,000 3,000 2,000 1,000 0 CO eq. (kg ha ) 2 -1 Guanábana Agrochemicals Embodied emissions fertiliser production 1 2 3 4 5 6 7 8 9 10 Year 0 CO eq. (kg ha ) 2 -1 1 2 3 Year Mora Fertiliser induced Calculated with the Cool Farm Tool, a greenhouse gas calculator for farming systems, provided as open source from the Sustainable Food Lab (http://www.sustainablefoodlab.org) High share of fertilizer induced emissions (mainly N2O) and embodied CO2 emissions of fertilizer production. Great potential to reduce C footprint through alternative nutrient management. Further research is required on how to incorporate C sequestration of perennial trees into PES schemes.
  14. 14. Carbon footprint of bioethanol production from banana and cooking banana discard (Costa Rica, Ecuador) Comparison of three production systems: (1) Agroforestry system where Musa are planted as shade trees for coffee and do not receive extra input. (2) Organic banana producers, where fertilizer inputs originate from within the farm boundary (compost, animal manure). (3) Conventional banana producers who apply large amounts of mineral fertilizers and pesticides.
  15. 15. rendimiento bananas rendimiento numero de plantas peso de racimo cantidad desechos desechos porcentaje desecho area de finca rendimiento etanol por hectarea eficiencia de conversion precio gasolina etanol consumo de gasolina costos gasolina rendimiento etanol finca etanol finca substitucion de gasolina substitucion
  16. 16. Table 2. Production data for the Ecuador case studies. Organic farms (Chimborazo- Guayas) Conventional farms (Guayas) Average farm size (ha) 31.3 2.7 Varieties Bocadillo Tafetan Total Cavendish Average area banana cultivation (ha) 13.3 6.7 20 2.5 # plants ha-1 1112 625 - 1216 bunch weight (kg) 13.5 16.2 - 28 Yield (t ha-1 yr-1) 15.0 6.4 21.4 34.1 Waste (%) 8.3 8.3 - 8.3 Waste biomass (t ha-1 yr-1) 1.3 0.5 1.8 2.8 Pulp (%) 59.1 65.8 - 62.0 Pulp biomass from waste (t ha-1 yr-1) 0.74 0.35 1.1 1.75 Dry matter (%) 34.6 26.9 - 33.1 Dry matter waste biomass (kg ha-1 yr-1) 254.8 94.2 349.0 579.9 Starch (%) 82.6 77.0 - 82.3 Starch waste biomass (kg ha-1 yr-1) 210.5 72.6 283.0 477.3 ETOH per bunch (mL) 84 79 - 122 ETOH from waste biomass (L ha-1 yr-1) 75.8 26.1 101.9 171.8 ETOH from waste per farm (L yr-1) 2038 430 1 Data taken from Gibert et al. (2009)
  17. 17. Carbon emissions during bioethanol life cycle C costs of bioethanol production from conventional banana producers are three times higher than in agroforestry system, mainly due to high amounts of external inputs. 0.4 0.3 0.2 0.1 0.0 C emissions (kg L-1) Processing plant Transportation Pesticides Fertilizer Costa Rica Agroforestry Ecuador conventional Ecuador organic
  18. 18. Avoided C emissions of bioethanol from Musa discard All three bioethanol production systems yielded avoided C emission, but values for agroforestry systems and organic producers were higher than for the conventional producers. Farm households could save 220- 1038 kg C yr-1 (depending on farm size) when replacing petroleum based gasoline with bioethanol from Musa discard. It has to be further assessed how this approach could be integrated into PES schemes. C emissions bioethanol C emissions gasoline Avoided C emissions Costa Rica Agroforestry Ecuador conventional Ecuador organic 1.0 0.5 0.0 -0.5 -1.0 C (kg L-1) Graefe et al. (2010) Energy and carbon footprints of bioethanol production using banana and cooking banana discard: A case study from Costa Rica and Ecuador . To be submitted to Biomass and Bioenergy

×