Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
On the Possibility of Manipulating Lightwaves
via Active Electric Charges
Chungpin Liao1,2,* Li-Shen Yeh,2 Wen-Bing Lai,1,...
2015/8/13 2Chungpin Liao et al.
Outline
• Can TEM waves be affected by the presence of electric charges?
• We’ve seen role...
2015/8/13 Chungpin Liao et al. 3
• Can TEM waves be affected by the presence of electric charges?
The TEM solution is from...
2015/8/13 Chungpin Liao et al. 4
Q: How come in fully-ionized dense plasmas, which is full of
positive and negative charge...
2015/8/13 Chungpin Liao et al. 5
• We’ve seen role of passive charges  dipoles  dielectrics
Matters respond to impinging...
Chungpin Liao et al. 6
• Due to Doyle [1985],* the whole set of Fresnel equations
could be written in its “scattering form...
Chungpin Liao et al. 7
 
 













iti
t
it
p
ip
P
E



 sincos2
sin
cos
0
 
 
...
Chungpin Liao et al. 8
 
 
















iti
t
it
p
i
MP
E





 sincos2
sin
cos
0
0
...
Chungpin Liao et al. 9
• Similarly, for s-wave, with total P and M contributions:
 
 













...
Chungpin Liao et al. 10
E.g., adding permanent dipoles for novel applications
• By generalization of the types of involved...
Chungpin Liao et al. 11
 
 













iti
t
it
p
ip
P
E



 sincos2
sin
cos
0
 
 
...
Chungpin Liao et al. 12
• Adding P0 into an unmagnetized host and look at the p-wave case:
2015/8/13
     
 

...
2015/8/13 Chungpin Liao et al. 13
• Can EM waves/ lights be manipulated meaningfully by
active charges instead?
H
E
t
 ...
2015/8/13 14Chungpin Liao et al.
• Exact solution in the presence of still and moving charges
 useful?
The formal approac...
2015/8/13 Chungpin Liao et al. 15
Now, according to Ampere’s law: E
t
JH u





 
 








...
2015/8/13 Chungpin Liao et al. 16
On the other hand, we work on Gauss’ E law: uE  

  



u
t
u A
tt
A

...
2015/8/13 17Chungpin Liao et al.
The formal general solution: (see, e.g., Feynman Lecture Notes –II)
  2
12
12
4
,2
,1 d...
2015/8/13 Chungpin Liao et al. 18
• E. T. Whittaker’s# two potential general solution  useful?
2
2
22
22222
1
,
1
,
1
t
F...
2015/8/13 19Chungpin Liao et al.
• Feynman’s+ versatile formula  intuitive and useful?












 'ˆ
1
'...
2015/8/13 Chungpin Liao et al. 20
• Scope reduction to steady-state  effect of interfacial
active charges  Experiment 1
...
21
2
0 0 02
0u p uE J

     


         
.const
0  0
0


spsu
Pu


no source of E
2
0 ...
V
0
ITO
ZnO
DC current
glass
s < 0
2015/8/13 22Chungpin Liao et al.
• Experiments & results
+
-+
-
Laser beam spot  more...
2015/8/13 23Chungpin Liao et al.
56.0
58.0
60.0
62.0
64.0
66.0
0.0 5.0 10.0
光功率(µW)
Time (minute)
2015.07.24_measured inte...
2015/8/13 24Chungpin Liao et al.
417.5
420.0
422.5
425.0
427.5
430.0
0.0 1.0 2.0 3.0 4.0 5.0
light intensity (µW)
Time (mi...
2015/8/13 Chungpin Liao et al. 25
405.0
410.0
415.0
420.0
425.0
430.0
0.0 1.0 2.0 3.0 4.0 5.0
light intensity (µW)
Time (m...
Experiment 2: charge-influenced light reflection
2015/8/13 Chungpin Liao et al. 26
Dielectric: paper
Solid-state
Argon las...
0.00174
0.00176
0.00178
0.0018
0.00182
0.00184
0.00186
0.00188
0 2 4 6 8 10 12 14 16 18 20
W
Time(min)
No bias
Biased at -...
2015/8/13 Chungpin Liao et al. 28
Summary & conclusions
• Active electric charges were found to be responsive to incident
...
Upcoming SlideShare
Loading in …5
×

0

Share

Download to read offline

On the Possibility of Manipulating Lightwaves via Active Electric Charges

Download to read offline

‧ Can TEM waves be affected by the presence of electric charges?
‧ We’ve seen role of passive charges → dipoles → dielectrics
‧ Can EM waves/ lights be manipulated meaningfully by
active charges instead?
‧ Exact solution in the presence of still and moving charges
→ useful?
‧ E. T. Whittaker’s two potential general solution → useful?
‧ Feynman’s versatile formula → intuitive and useful?
‧ Scope reduction to steady-state → effect of interfacial & surface active charges
‧ Experiments & results

Related Books

Free with a 30 day trial from Scribd

See all
  • Be the first to like this

On the Possibility of Manipulating Lightwaves via Active Electric Charges

  1. 1. On the Possibility of Manipulating Lightwaves via Active Electric Charges Chungpin Liao1,2,* Li-Shen Yeh,2 Wen-Bing Lai,1,2 Jyun-Lin Huang,1,2 (廖重賓) (葉立紳) (賴玟柄) (黃均霖) 1Graduate School of Electro-Optic and Materials Science, National Formosa University (NFU), Huwei, Taiwan 632, ROC. 2Advanced Research & Business Laboratory (ARBL), Taichung, Taiwan 407, ROC. *Corresponding Author: cpliao@alum.mit.edu 2015/8/13 1Chungpin Liao et al.
  2. 2. 2015/8/13 2Chungpin Liao et al. Outline • Can TEM waves be affected by the presence of electric charges? • We’ve seen role of passive charges  dipoles  dielectrics • Exact solution in the presence of still and moving charges  useful? • Feynman’s versatile formula  intuitive and useful? • Scope reduction to steady-state  effect of interfacial & surface active charges • Can EM waves/ lights be manipulated meaningfully by active charges instead? • Experiments & results • E. T. Whittaker’s two potential general solution  useful?
  3. 3. 2015/8/13 Chungpin Liao et al. 3 • Can TEM waves be affected by the presence of electric charges? The TEM solution is from the source-free wave equation: Hence, the answer should be YES, especially when the charges are responsive to the EM wave/ light frequency. But … 2 2 2 0 E E t       02 2 2     t B B   
  4. 4. 2015/8/13 Chungpin Liao et al. 4 Q: How come in fully-ionized dense plasmas, which is full of positive and negative charges, TEM waves are normal modes? A: Would the quasi-neutrality property of plasma convince us?  i.e., net charge ~ 0 Q: What about the situations where charge number density ne falls between those of vacuum and dense plasma? ? 1. Self-consistent in terms of charges and fields? 2. Even motionless charges, any clue to wave-guiding?
  5. 5. 2015/8/13 Chungpin Liao et al. 5 • We’ve seen role of passive charges  dipoles  dielectrics Matters respond to impinging lights via passively induced charges, i.e., induced dipoles, in ways against the incoming EM fields.  Cluster of induced electric dipoles  dielectrics However, there is essentially NO magnetic dipoles responsive to light frequency.
  6. 6. Chungpin Liao et al. 6 • Due to Doyle [1985],* the whole set of Fresnel equations could be written in its “scattering form”, i.e., D  S: (D – single dipole, S – collective dipoles oscillation pattern)                            t iti itrrrr r p i p t E E     sin sincos2 cos11 (a)                                    it it itrrrr itrrrr p i p r E E     sin sin cos11 cos11 (b)                            t iti itrrrr r s i s t E E     sin sincos2 cos11 (c)                                    it it itrrrr itrrrr s i s r E E     sin sin cos11 cos11 (d) • S  0, D = 0 for (b), (d)  Brewster’s angle, e.g.   1 tan2    rr rrrp B      1 tan2    rr rrrs B    2015/8/13 rrti nn  ,1 * W. T. Doyle, “Scattering approach to Fresnel’s equations and Brewster’s law,” Am. J. Phys. 53 (5), 463-468 (1985).
  7. 7. Chungpin Liao et al. 7                  iti t it p ip P E     sincos2 sin cos 0                  iti t it p rp P E     sincos2 sin cos 0 electric dipole p-wave                 iti tp im M E     sincos2 sin 0 0                 iti tp rm M E     sincos2 sin 0 0 p-wave magnetic dipole Total:                     iti t it p i MP E       sincos2 sin cos 0 0 0                     iti t it p r MP E       sincos2 sin cos 0 0 0 • Induced dipole sources revealed mNMpNP   2015/8/13 p im p ip p i EEE  p rm p rp p r EEE 
  8. 8. Chungpin Liao et al. 8                     iti t it p i MP E       sincos2 sin cos 0 0 0                     iti t it p r MP E       sincos2 sin cos 0 0 0 Putting    p tr EP  10   and   p t r r r EM     0 0 1 into: we obtain:                                it it itrrrr itrrrr p i p r E E     sin sin )cos(11 )cos(11 (b) i.e., Scattering form of one of the Fresnel equations • Checking: p-wave as an example Source equations 2015/8/13
  9. 9. Chungpin Liao et al. 9 • Similarly, for s-wave, with total P and M contributions:                   iti t it s i MP E       sincos2 sin cos 0 0 0 Putting    p tr EP  10   and   p t r r r EM     0 0 1 in, to obtain:                   iti t it s r MP E       sincos2 sin cos 0 0 0                                it it itrrrr itrrrr s i s r E E     sin sin )cos(11 )cos(11 (d) i.e., Scattering form of one of the Fresnel equations Source equations 2015/8/13
  10. 10. Chungpin Liao et al. 10 E.g., adding permanent dipoles for novel applications • By generalization of the types of involved dipoles in source equations • Namely, in general, optically-responsive permanent dipoles (P0 and M0) embedded in the original material can vary optical properties, such as the Brewster angle. • This is, now P = P0 + Pind, M = M0 + Mind (with Pind and Mind as induced dipoles) • However, still, how exactly do the dipoles affect the optical properties, physically? • See e.g., p-wave, unmagnetized case (i.e., P  0, but M = 0) 2015/8/13
  11. 11. Chungpin Liao et al. 11                  iti t it p ip P E     sincos2 sin cos 0                  iti t it p rp P E     sincos2 sin cos 0 So, the P (of whatever origin) contributes only its component along the relevant E. || P All induced P (so || Et) 2015/8/13     itit PP   coscos
  12. 12. Chungpin Liao et al. 12 • Adding P0 into an unmagnetized host and look at the p-wave case: 2015/8/13                       iti t iti p tr p ip P EE      sincos2 sin coscos1 0 0 0    ti p tr E   cos1~                     iti t iti p ip PP E       sincos2 sin coscos 0 0 0 0    ti p tr E   cos1
  13. 13. 2015/8/13 Chungpin Liao et al. 13 • Can EM waves/ lights be manipulated meaningfully by active charges instead? H E t          ( curl on Faraday’s )  u = = = = uniform ε Ampere’s Gauss’E uniform μ H E t      E)E( 2    H t      u E J t    2 2 2 u uJE E tt                 The answer should be YES, even though it is nontrivial.
  14. 14. 2015/8/13 14Chungpin Liao et al. • Exact solution in the presence of still and moving charges  useful? The formal approach is as follows: A tt B E          AHB    (Faraday’s law)          0 t A E   t A E      t J E t E u                   2 2 2
  15. 15. 2015/8/13 Chungpin Liao et al. 15 Now, according to Ampere’s law: E t JH u                                    t A t u AA A B E t JH   2 uJ t A A t A                 2 2 2 Now, let t A      (Lorentz gauge) So, we have: uJ t A A         2 2 2
  16. 16. 2015/8/13 Chungpin Liao et al. 16 On the other hand, we work on Gauss’ E law: uE          u t u A tt A                   2 We reach:    u t     2 2 2 So, we have: AHB    t A E      uJ t A A         2 2 2    u t     2 2 2 t A      Using (Lorentz gauge)
  17. 17. 2015/8/13 17Chungpin Liao et al. The formal general solution: (see, e.g., Feynman Lecture Notes –II)   2 12 12 4 ,2 ,1 dV r c r t t u              2 12 2 12 4 ,2 ,1 dV rc c r tJ tA u             Q: Is it helpful in regard to the purpose of guiding lightwaves? TEM Light in vacuum , J  0 ? 2’ 2 1r’ r12 Position at t -r’/c Position at t q q v Again, self-consistency problem here, unless for motionless charges. Secondly, any practical clue provided for EM wave guiding?
  18. 18. 2015/8/13 Chungpin Liao et al. 18 • E. T. Whittaker’s# two potential general solution  useful? 2 2 22 22222 1 , 1 , 1 t F cz F D tx G czy F D ty G czx F ED zyxx                    2 2 2 22222 , 1 , 1 y G x G H zy G tx F c H zx G ty F c H zyx                             ),,( cos,sinsin,cossinˆ ˆ ,,, ,,, 2 0 0 2 0 0 zyxr k rkct gddtzyxG fddtzyxF                   F & G are: arbitrary functional of   Nontrivial to put to use # Whittaker, E. T., "ON AN EXPRESSION OF THE ELECTROMAGNETIC FIELD DUE TO ELECTRONS BY MEANS OF TWO SCALAR POTENTIAL FUNCTIONS," Proceedings of the London Mathematical Society, Vol. 1, p. 367-372 (1904).
  19. 19. 2015/8/13 19Chungpin Liao et al. • Feynman’s+ versatile formula  intuitive and useful?              'ˆ 1 ' 'ˆ' ' 'ˆ 4 2 2 222 r dt d cr r dt d c r r rq E   For a charge q in whatever motion ErBc   'ˆ Q: How to arrange so many q’s in motion such that the desired E & B fields are secured for light-guiding purposes? + Feynman R., Leighton R. B., Sands M., The Feynman lectures on physics, Vol. II, Sec. 21, Addison-Wesley, Boston, MA, USA (1971).
  20. 20. 2015/8/13 Chungpin Liao et al. 20 • Scope reduction to steady-state  effect of interfacial active charges  Experiment 1 0   J t  Charge conservation law: Steady state: .vv0 ee constEEenJJ eee    At interface between two conducting media:         0  t tEtEtE sb n a nn 
  21. 21. 21 2 0 0 02 0u p uE J                    .const 0  0 0   spsu Pu   no source of E 2 0   Note that the distrib. of ε plays no part in shaping the E lines, but σ can. Conduction and EQS Charge Relaxation ba   terminates or originates on it )1(ˆ 0 b aa spsu En     0 spsu  En  ˆ& ab   < 0 E excluded from high σ 0 0 up  E  & terminates or originates on them (it) 20     uup J  increasing)r(   E attenuates < 0 2015/8/13 Chungpin Liao et al.
  22. 22. V 0 ITO ZnO DC current glass s < 0 2015/8/13 22Chungpin Liao et al. • Experiments & results + -+ - Laser beam spot  more focused E direction
  23. 23. 2015/8/13 23Chungpin Liao et al. 56.0 58.0 60.0 62.0 64.0 66.0 0.0 5.0 10.0 光功率(µW) Time (minute) 2015.07.24_measured intensity at edge DC power supply turned off Spot bottom edge, ITO(+)/ZnO(-) 4V Spot bottom edge, ZnO(+)/ITO(-) 4V Residual charges - undesirable
  24. 24. 2015/8/13 24Chungpin Liao et al. 417.5 420.0 422.5 425.0 427.5 430.0 0.0 1.0 2.0 3.0 4.0 5.0 light intensity (µW) Time (minute) 2015.07.31_Face to face_Top Edge_ITO (+)/ZnO(-)_1.0V to 4.0V Unbiased reference 4 V 1 V 2 V 3 V The repeatability was poor so far, possibly due to varying interfacial states.
  25. 25. 2015/8/13 Chungpin Liao et al. 25 405.0 410.0 415.0 420.0 425.0 430.0 0.0 1.0 2.0 3.0 4.0 5.0 light intensity (µW) Time (minute) 2015.07.31_Face to face_Top Edge_ITO(+)/ZnO(-)_4.0 V to 1.0V reference 1 V 2 V 3 V 4 V There were likely hysteresis effect due to residual charges.
  26. 26. Experiment 2: charge-influenced light reflection 2015/8/13 Chungpin Liao et al. 26 Dielectric: paper Solid-state Argon laser, with E vertical to the laser beam Light power measurement per 300 ms Smooth and shiny stainless steel E Biased Capacitor
  27. 27. 0.00174 0.00176 0.00178 0.0018 0.00182 0.00184 0.00186 0.00188 0 2 4 6 8 10 12 14 16 18 20 W Time(min) No bias Biased at -15V Turning off -15V Biased at +15V Turning off +15V Measured results: 2015/8/13 Chungpin Liao et al. 27
  28. 28. 2015/8/13 Chungpin Liao et al. 28 Summary & conclusions • Active electric charges were found to be responsive to incident lightwaves and to affect the propagation/reflection of lightwaves. • Guiding of lightwaves by active charges is valid in principle, but putting it to work practically would need more creativity and efforts. • In the future, such active ingredients may assist the traditional passive dielectric approach for more meaningful optical and photonic purposes.

‧ Can TEM waves be affected by the presence of electric charges? ‧ We’ve seen role of passive charges → dipoles → dielectrics ‧ Can EM waves/ lights be manipulated meaningfully by active charges instead? ‧ Exact solution in the presence of still and moving charges → useful? ‧ E. T. Whittaker’s two potential general solution → useful? ‧ Feynman’s versatile formula → intuitive and useful? ‧ Scope reduction to steady-state → effect of interfacial & surface active charges ‧ Experiments & results

Views

Total views

405

On Slideshare

0

From embeds

0

Number of embeds

145

Actions

Downloads

1

Shares

0

Comments

0

Likes

0

×