Opportunity to learn secondary maths: A curriculum approach with TIMSS 2011 data
1. OPPORTUNITY TO LEARN
SECONDARY MATHS:
A CURRICULUM APPROACH
WITH TIMSS 2011 DATA
Dr. Christian Bokhove
Southampton Education School
BSLRM day conference
November 7th
2015
2. Rationale
• enGasia project, studying geometry education in
international perspective
• Differences in curriculum
• Existing international comparisons like TIMSS and PISA
• Recently published paper ‘Opportunity to Learn’
3. IEA & OECD
“The International Association for
the Evaluation of Educational
Achievement (IEA) is an
independent, international
cooperative of national research
institutions and governmental
research agencies. It conducts large-
scale comparative studies of
educational achievement and other
aspects of education.”
“The mission of the Organisation
for Economic Co-operation and
Development (OECD) is to promote
policies that will improve the
economic and social well-being of
people around the world.”
4. Opportunity to Learn
• Relationship Socioeconomic status and achievement (e.g.
Sirin, 2005; Chudgar & Luschei, 2009)
• One factor: role of curriculum, exposure to curriculum
content.
• Opportunity to learn (OTL; Carroll, 1963), content coverage
5. Schmidt, Burroughs, Zoido & Houang (2015)
• Role of schooling in perpetuating
educational inequality
• PISA 2012 data
• Opportunity to Learn
• “instructional content as a
mediator for socioeconomic
inequality”
• Student level indicators?
• Key question what is involved in
OTL? Surely the
teacher/classroom level is
important?
7. Dynamic model
• Educational outcomes are influenced by
variables at the student level, the
classroom level, the school level and
national/regional level. Dynamic model
(Creemers & Kyriakides, 2008).
• ‘Management of time’ at
teacher/classroom level one of the most
significant factors of effectiveness.
• OTL specifically:
– national/regional level
(e.g. national curriculum),
– classroom (content
covered by teacher)
– and to a lesser extent
school level.
7
8. So a curriculum approach
• Do students know best what contents is covered?
• And if they do, then isn’t that more a proxy for achievement?
• With content covered, teachers perhaps know best?
• TIMSS more curriculum oriented than PISA (Rindermann &
Baumeister, 2015)
• TIMSS samples classrooms
8
9. TIMSS 2011
“TIMSS 2011 is the fifth in IEA’s series of international
assessments of student achievement dedicated to
improving teaching and learning in mathematics and
science. First conducted in 1995, TIMSS reports every
four years on the achievement of fourth and eighth grade
students.“
http://timssandpirls.bc.edu/timss2011/
11. Curriculum model
• TIMSS’ curriculum model (Mullis, Martin, Ruddock,
O’Sullivan, & Preuschoff, 2009)
– intended curriculum (the educational system's aims and
goals)
– implemented curriculum (the actual strategies,
practices, and activities found in classrooms)
– attained curriculum (student learning)
11
Multilevel: students in classrooms in countriesMultilevel: students in classrooms in countries
12. Methodology: analytical approach
• Secondary data analysis of TIMSS 2011 data
• Use multilevel models
• Take into account complex sampling design of TIMSS 2011
– Different probabilities of units being selected
(classrooms, students) → sampling weights
– Rotated-booklet design → Plausible Values combined by
Rubin’s rules (Rubin, 1987).
– No jackknife for correct SE measurement → multilevel
approach should cater for this
12
13. Methodology: analytical approach
• IDB analyser used to create datasets for three levels
• HLM 6.08 used to build four models
– A null model
– A model with SES variables
– A model with OTL variables
– A model with both SES and OTL variables
• Further assumptions
– Group-centered variables at student and classroom levels
– Grand mean centered at country level
– Full Maximum Likelihood
– Missing data imputed with EM algorithm 13
14. Dataset
• TIMSS 2011 grade 8 data
• Data at three levels
– achievement and background data of students,
– classroom level data from the teacher questionnaire,
and
– curriculum data at the country level.
• After data preparation: 287395 students in 11688
classrooms in 50 countries.
• Choice of variables
16. Independent variables: student level
• ‘Home Economic Resources’
– Proxy for SES (and related to prior knowledge)
– Numbers of books at home, highest level education of
either parent, number of home study support
– One scale through IRT scaling (Rasch partial credit
model)
• No OTL measure at student level for reasons explained
previously.
16
17. Independent variables: class level
• Mean SES in a class → Classroom SES
• Newly created OTL measure → Classroom OTL
– Percentage of the content domain covered with students
– Maths instruction time
– Variable between 0 and 2 of
content coverage
17
18. Independent variables: country level
• Mean SES in a country → Country SES
• Newly created OTL measure → Classroom OTL
– Is there a national curriculum?
– Does curriculum prescribe goals and objectives?
– Curriculum coverage (content domains: number,
algebra, geometry and data and chance)
– Variable between 0 and 3 content coverage
• (Also made mean country OTL but strangely enough low
correlation with teacher reporting)
18
22. Conclusions
• SES variables reduce classroom and country variance
• OTL variables also reduction but less
• SES variables significant (country somewhat less strong)
• OTL significant at classroom level not country level
So here we can confirm big role SES plays, also in relation to
OTL, but at the country level curriculum plays less of a role.
It’s more about the classroom/teacher.
22
23. Discussion/further analyses
• Content domains: number, algebra, geometry and data and
chance.
• Sampling classrooms
• Correlations low:
– Mean country OTL and newly created country OTL
variable
– Same with mean student perception ‘time spent’ and
teacher ‘time spent’ for a classroom.
24. Discussion/further analyses
• Country OTL measure: most have curriculum that
prescribes objectives.
• Specific country context: OTL in the English curriculum
– Double/triple science
– Setting
26. References
Carroll, J.B. (1963). A model of school learning. Teachers College Record, 64(8), 723-733.
Chudgar, A. & Luschei, T.F. (2009). National income, income inequality, and the importance of schools: A hierarchical cross-
national comparison. American Educational Research Journal, 46(3), 626-658.
Creemers, B.P.M. & Kyriakides, L. (2008). The dynamics of educational effectiveness: a contribution to policy, practice and
theory in contemporary schools. London: Routledge.
Mullis, I.V.S., Martin, M.O., Ruddock, G.J., O’Sullivan, C.Y., & Preuschoff, C. (2009). TIMSS 2011 Assessment frameworks.
Lynch School of Education, Boston College.
Mullis, I.V.S., Martin, M.O., Foy, P., & Arora, A. (2012). TIMSS 2011 International results in mathematics. Lynch School of
Education, Boston College.
Rindermannm H, & Baumeister, A.E.E. (2015). Validating the interpretations of PISA and TIMSS tasks: A rating study.
International Journal of Testing, 15(1), 1-22.
Rubin, D. (1987). Multiple imputation for nonresponse in sample surveys. New York: John Wiley.
Rutkowski, L., Gonzalez, E., Joncas, M., & von Davier, M. (2010). International large-scale assessment data: Issues in
secondary analysis and reporting. Educational Researcher, 39(2), 142-151.
Schmidt, W.H., Zoido, P., & Cogan, L.S. (2013). Schooling matters: Opportunity to learn in PISA 2012 (OECD Education
Working Papers No. 95). Paris, France: Organisation for Economic Co-operation and Development.
Schmidt, W.H., Burroughs, N.A., Zoido, P., & Houang, R.T. (2015). Educational Researcher, 44(7), 371-386.
Sirin, S. R. (2005). Socioeconomic status and academic achievement: A meta-analytic review of research. Review of
Educational Research, 75(3), 417–453. 26
Editor's Notes
Previous studies have shown that socioeconomic status (SES) and ‘opportunity to learn’ (OTL), which can be typified as ‘curriculum content covered’, are significant predictors of students’ mathematics achievement. Seeing OTL as curriculum variable, this paper explores multilevel models (students in classrooms in countries) and appropriate classroom (teacher) level variables to examine SES and OTL in relation to mathematics achievement in the 2011 Trends in International Mathematics and Science Study (TIMSS 2011). Results suggest that the combination of SES and OTL explains a considerable amount of variance at the classroom and country level, but that this is not caused by country level OTL.
Assumptions variables not to include:
Gender: no reason to believe there are differences in gender