Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Calculo1 aula01

131 views

Published on

  • Be the first to comment

  • Be the first to like this

Calculo1 aula01

  1. 1. Aula 1Velocidade instant^nea e derivadas a1.1 Velocidade instant^nea aUm ponto m¶vel M desloca-se ao longo de uma linha reta horizontal, a partir de um oponto O. ∆s O M s=0 s = s(t) s 0 = s(t 0) s1 = s(t 0+ ∆t) s O deslocamento s, de M , em rela»~o ao ponto O, ¶ a dist^ncia de O a M , se M ca e aest¶ µ direita de O, e ¶ o negativo dessa dist^ncia se M est¶ µ esquerda de O. Assim, s ¶ aa e a aa epositivo ou negativo, conforme M se encontre, respectivamente, µ direita ou µ esquerda a ade O. Com estas conven»~es, a reta passa a ser orientada, o que chamamos de eixo, cosendo O sua origem. O deslocamento s depende do instante de tempo t, ou seja, s ¶ uma fun»~o da e cavari¶vel t: a s = s(t) Em um determinado instante t0 , o deslocamento de M ¶ s0 = s(t0 ). Em um einstante posterior t1 , o deslocamento de M ¶ s1 = s(t1 ). eA velocidade m¶dia do ponto M , no intervalo de tempo [t0 ; t1 ] ¶ dada por e e s1 ¡ s0 s(t1 ) ¡ s(t0 ) vm = = t1 ¡ t0 t1 ¡ t0 Podemos tamb¶m escrever t1 = t0 + ¢t, ou seja, ¢t = t1 ¡ t0 , e tamb¶m e e¢s = s(t1 ) ¡ s(t0 ) = s(t0 + ¢t) ¡ s(t0 ). 1
  2. 2. ^Velocidade instantanea e derivadas 2Teremos ent~o a s(t0 + ¢t) ¡ s(t0 ) ¢s vm = = ¢t ¢t Por exemplo, vamos supor que s(t) = 1 at2 (ponto m¶vel uniformemente ace- 2 olerado). Assim, no instante t = 0 o ponto m¶vel est¶ em s(0) = 1 a ¢ 02 = 0. o a 2 A partir de um certo instante t0 , temos uma varia»~o de tempo ¢t. Seja t1 = cat0 + ¢t. Podemos ter ¢t > 0 ou ¢t < 0 (quando ¢t < 0, t1 antecede t0 ). Teremosent~o a 1 1 ¡ ¢ s(t1 ) = s(t0 + ¢t) = a(t0 + ¢t)2 = ¢ at2 + 2at0 ¢t + a(¢t)2 0 2 2A varia»~o do deslocamento do ponto m¶vel, nesse intervalo de tempo, ser¶ ca o a 1 1 1 ¢s = s(t1 ) ¡ s(t0 ) = at2 + at0 ¢t + a(¢t)2 ¡ at2 0 2 2 2 0ou seja, a(¢t)2 ¢s = at0 ¢t + 2 A velocidade m¶dia do ponto, no intervalo de tempo [t0 ; t1 ], ser¶ dada por e a 2 ¢s at0 ¢t + a(¢t) 2 a¢t = = at0 + ¢t ¢t 2 a(¢t)2 Se ¢t ¼ 0, ent~o tamb¶m teremos ¢s = at0 ¢t + a e 2 ¼ 0. No entanto, ¢s a¢t = at0 + ¼ at0 ¢t 2De um modo geral, de¯nimos a velocidade instant^nea v(t0 ), do ponto M , no instante at0 , como sendo o limite da velocidade m¶dia no intervalo de t0 a t0 + ¢t, quando ¢t etende a zero (esta foi uma id¶ia de Isaac Newton), e escrevemos e ¢s v(t0 ) = lim ¢t!0 ¢t No nosso exemplo, µ ¶ a¢t v(t0 ) = lim at0 + = at0 ¢t!0 21.2 Derivada de uma fun»~o caUma fun»~o f ¶ uma lei que associa cada valor x de um certo conjunto A (o dom¶ ca e ³niode f ), um ¶nico valor f (x) de um certo conjunto B (o contra-dom¶ de f ). Neste u ³nio
  3. 3. ^Velocidade instantanea e derivadas 3curso, teremos sempre A ½ R e B ½ R. Veja tamb¶m a observa»~o 1.1, mais adiante e canesta aula. Muitas vezes diremos fun»~o f(x)", em lugar de fun»~o f ". ca ca Dada uma fun»~o f (x), a fun»~o derivada f 0 (x) (leia-se f linha de x") ¶ a fun»~o ca ca e cade¯nida quando consideramos, para cada x, sujeito a uma varia»~o ¢x 60, a varia»~o ca = cacorrespondente de y = f (x), ¢y = ¢f = f (x + ¢x) ¡ f(x)e ent~o calculamos o valor limite da raz~o a a ¢f f (x + ¢x) ¡ f(x) = ¢x ¢xquando ¢x se aproxima inde¯nidamente de 0. Ou seja, ¢f f (x + ¢x) ¡ f (x) f 0 (x) = lim = lim ¢x!0 ¢x ¢x!0 ¢x ³¯co de x, digamos x = x0 ,Para um valor espec¶ f (x0 + ¢x) ¡ f (x0 ) f 0 (x0 ) = lim ¢x!0 ¢x¶ a derivada de f (ou de f (x)), no ponto x0 .e Como primeiro e importante exemplo, temosRegra 1.1 Se f (x) = xn , n inteiro positivo, ent~o f 0 (x) = nxn¡1 aDemonstra»~o. Da ¶lgebra elementar, temos as seguintes f¶rmulas de fatora»~o: ca a o ca b2 ¡ a2 = (b ¡ a)(b + a) b3 ¡ a3 = (b ¡ a)(b2 + ab + a2 ) b4 ¡ a4 = (b ¡ a)(b3 + ab2 + a2 b + a3 )que o leitor pode veri¯car, simplesmente efetuando os produtos µ direita, e ent~o sim- a apli¯cando. De um modo geral, para n ¸ 4, vale a seguinte f¶rmula: o bn ¡ an = (b ¡ a)(bn¡1 + abn¡2 + a2 bn¡3 + ¢ ¢ ¢ + an¡3 b2 + an¡2 b + an¡1 ) (1.1)Sendo f (x) = xn , temos para ¢x = 0, 6 ¢f = f(x + ¢x) ¡ f (x) = (x + ¢x)n ¡ xn (1.2)Substituindo b = x + ¢x e a = x, em 1.1, temos b ¡ a = ¢x, e ent~o obtemos a ¢f = ¢x ¢ ((x + ¢x)n¡1 + x ¢ (x + ¢x)n¡2 + ¢ ¢ ¢ + xn¡2 (x + ¢x) + xn¡1 )
  4. 4. ^Velocidade instantanea e derivadas 4do que ent~o a ¢f = (x + ¢x)n¡1 + x ¢ (x + ¢x)n¡2 + ¢ ¢ ¢ + xn¡2 (x + ¢x) + xn¡1 ¢xDa¶ lim ¢f = xn¡1 + xn¡1{z ¢ ¢ ¢ + xn¡1 = nxn¡1 . ³, ¢x | + } ¢x!0 n parcelas Portanto, (xn )0 = nxn¡1 .1.2.1 Nota»~es simb¶licas para derivadas, habitualmente usadas co oSendo y = f (x), tamb¶m escrevemos ¢y = ¢f = f (x + ¢x) ¡ f (x), e denotamos e dy ¢y = (derivada de y em rela»~o a x) = lim ca dx ¢x!0 ¢x dy Assim temos = f 0 (x). Indicamos ainda dx µ ¶ ¯ 0 dy dy ¯ ¯ f (x0 ) = = dx x=x0 dx ¯x=x0A raz~o a ¢y f(x0 + ¢x) ¡ f (x0 ) = ¢x ¢x¶ a taxa de varia»~o m¶dia de y, em rela»~o a x, no intervalo [x0 ; x0 + ¢x] (ou noe ca e caintervalo [x0 + ¢x; x0 ], se ¢x < 0).O valor µ ¶ 0 dy ¢y f (x0 ) = = lim dx ¢x!0 ¢x x=x0¶ chamado de taxa de varia»~o (instant^nea) de y em rela»~o a x, no ponto x = x0 .e ca a ca Outras nota»~es freqÄentemente utilizadas para as derivadas (os s¶ co u ³mbolos abaixotem o mesmo signi¯cado): f 0 (x) (nota»~o de Lagrange) ca (f (x))0 df (nota»~o de Leibniz, leia-se d^ f d^ x") ca e e dx dy (sendo y = f (x)) dx d (f (x)) dx _ x(t) (nota»~o de Newton, derivada de x em rela»~o µ vari¶vel t (tempo)) ca ca a a
  5. 5. ^Velocidade instantanea e derivadas 5 Tamb¶m tem o mesmo signi¯cado as nota»~es para a derivada de f no ponto x0 , e co df f 0 (x0 ) (f (x))0jx=x0 (x0 ) ¯ dx dy ¯ ¯ d (f (x))jx=x0 dx ¯x=x0 dxExemplo 1.1 De acordo com a regra 1.1, temos (x)0 = (x1 )0 = 1x1¡1 = x0 = 1, ou seja (x)0 = 1. (x2 )0 = 2x2¡1 = 2x. (x3 )0 = 3x3¡1 = 3x2 . (x100 )0 = 100x99 .Observa»~o 1.1 (Intervalos da reta, e dom¶ ca ³nios das fun»~es que estudaremos) coAqui, e no restante do texto, estaremos assumindo sempre que nossas fun»~es s~o fun»oes co a c~de uma vari¶vel real x, com valores f (x) reais, e est~o de¯nidas em intervalos ou reuni~es a a ode intervalos de R, ou seja, tem os valores de x tomados em intervalos ou reuni~es deointervalos. Os intervalos de R s~o conjuntos de uma das formas: a [a; b] = fx 2 R j a · x · bg (intervalo fechado de extremos a e b); ]a; b[ = fx 2 R j a < x < bg (intervalo aberto de extremos a e b); [a; b[ = fx 2 R j a · x < bg (intervalo de extremos a e b, semi-aberto em b); ]a; b] = fx 2 R j a < x · bg (intervalo de extremos a e b, semi-aberto em a):sendo a e b n¶meros reais, com a < b. Os intervalos acima s~o os intervalos limitados. u a Os intervalos ilimitados s~o conjuntos de uma das formas: a [a; +1[ = fx 2 R j x ¸ ag (intervalo fechado de a a +1); ]a; +1[ = fx 2 R j x > ag (intervalo aberto de a a +1); ]¡ 1; b] = fx 2 R j x · bg (intervalo fechado de ¡1 a b); ]¡ 1; b[ = fx 2 R j x < bg (intervalo aberto de ¡1 a b); ]¡ 1; +1[ = R (intervalo aberto de ¡1 a +1);sendo a e b n¶meros reais. u Assim, por exemplo, p 1. f (x) = x ¶ uma fun»~o que est¶ de¯nida para os valores reais de x para os p e ca a quais x existe e ¶ um n¶mero real, ou seja, para x ¸ 0. Assim, dizemos que o e u dom¶ ou campo de de¯ni»~o de f ¶ o intervalo D(f ) = [0; +1[. ³nio ca e
  6. 6. ^Velocidade instantanea e derivadas 6 2. f (x) = 1=x ¶ uma fun»~o que est¶ de¯nida para os valores reais de x para os e ca a quais 1=x existe e ¶ um n¶mero real, ou seja, para x 60. Assim, o dom¶ ou e u = ³nio campo de de¯ni»~o de f ¶ o conjunto D(f) = R ¡ f0g, ou seja, a reuni~o de ca e a intervalos ]¡ 1; 0[ [ ]0; +1[. p 1 3. f (x) = 2 ¡ x + px¡1 est¶ de¯nida para os valores reais de x para os quais a p p 2 ¡ x e 1= x ¡ 1 existem e s~o n¶meros reais, ou seja, para x · 2 (2 ¡ x ¸ 0) a u e x > 1 (x ¡ 1 > 0). Assim, o dom¶ ou campo de de¯ni»~o de f ¶ o intervalo ³nio ca e D(f) =]1; 2]. ³¯co de x, digamos x = x0 , no dom¶ de uma fun»~o f , ao Para um valor espec¶ ³nio cacalcularmos o limite f (x0 + ¢x) ¡ f(x0 ) f 0 (x0 ) = lim ¢x!0 ¢xestamos supondo que algum intervalo aberto, contendo x0 , tamb¶m ¶ parte do dom¶ e e ³niode f, de modo que x0 + ¢x tamb¶m estar¶ no dom¶ de f quando ¢x for n~o nulo e a ³nio ae su¯cientemente pequeno.1.3 Primeiras regras de deriva»~o (ou diferencia»~o) ca caDiferencia»~o ou deriva»~o de uma fun»~o ¶ o processo de c¶lculo da derivada da fun»~o. ca ca ca e a caRegra 1.2 Se f (x) ¶ uma fun»~o e c ¶ uma constante, ent~o e ca e a (cf (x))0 = cf 0 (x):Ou seja, a derivada de uma constante vezes uma fun»~o ¶ a constante vezes a derivada ca eda fun»~o. caRegra 1.3 Sendo f(x) e g(x) duas fun»~es, co (f(x) + g(x))0 = f 0 (x) + g 0 (x):Ou seja, a derivada de uma soma de duas fun»oes ¶ a soma das respectivas derivadas. c~ eDemonstra»~es das propriedades 1.2 e 1.3. Alguns fatos sobre limites s~o assumidos co aintuitivamente. cf(x + ¢x) ¡ cf (x) f (x + ¢x) ¡ f (x) (cf (x))0 = lim = lim c ¢ ¢x!0 ¢x ¢x!0 ¢x f(x + ¢x) ¡ f (x) = c ¢ lim ¢x!0 ¢x ¢f = c ¢ lim = cf 0 (x) ¢x!0 ¢x
  7. 7. ^Velocidade instantanea e derivadas 7 [f (x + ¢x) + g(x + ¢x)] ¡ [f (x) + g(x)] [f (x) + g(x)]0 = lim ¢x!0 ¢x [f (x + ¢x) ¡ f (x)] + [g(x + ¢x) ¡ g(x)] = lim ¢x!0 · ¢x ¸ f (x + ¢x) ¡ f (x) g(x + ¢x) ¡ g(x) = lim + ¢x!0 ¢x ¢x f(x + ¢x) ¡ f (x) g(x + ¢x) ¡ g(x) = lim + lim ¢x!0 ¢x ¢x!0 ¢x ¢f ¢g = lim + lim = f 0 (x) + g 0 (x) ¢x!0 ¢x ¢x!0 ¢xExemplo 1.2 Sendo f(x) = 2x3 ¡ 3x5 , temos f 0 (x) = (2x3 ¡ 3x5 )0 = (2x3 + (¡3)x5 )0 = (2x3 )0 + ((¡3)x5 )0 ((f + g)0 = f 0 + g 0 ) = 2(x3 )0 + (¡3)(x5 )0 ((cf)0 = cf 0 ) = 2 ¢ 3x2 + (¡3) ¢ 5x4 ((xn )0 = nxn¡1 ) = 6x2 ¡ 15x4Observa»~o 1.2 Por um argumento tal como no exemplo acima, temos tamb¶m ca e(f (x) ¡ g(x))0 = f 0 (x) ¡ g 0 (x).Regra 1.4 A derivada de uma fun»~o constante ¶ 0: se f (x) = c = constante, ca e 0 0ent~o f (x) = (c) = 0. aDemonstra»~o. Sendo f (x) = c = constante, ent~o ca a ¢f = f(x + ¢x) ¡ f (x) = c ¡ c = 0. Portanto, ¢f = ¢x = 0 ( ¢f ¶ 0 mesmo antes de calcularmos o limite). Logo ¢x 0 ¢x e ¢flim ¢x = lim 0 = 0.¢x!0 ¢x!0 Assim, se c ¶ uma constante, (c)0 = 0. e dyExemplo 1.3 Sendo y = ¡3t6 + 21t2 ¡ 98, calcular . dt Aplicando as regras acima estabelecidas, indicando por u0 a derivada de u emrela»~o a t, ca dy = (¡3t6 + 21t2 ¡ 98)0 dt = ¡18t5 + 42t
  8. 8. ^Velocidade instantanea e derivadas 8 1 dyExemplo 1.4 Sendo y = , calcular . x dx 1 Temos y = , e ent~o a x 1 1 x ¡ (x + ¢x) ¢x ¢y = ¡ = =¡ x + ¢x x x(x + ¢x) x(x + ¢x) ¢y 1 =¡ ¢x x(x + ¢x) dy ¢y 1 1 = lim = lim =¡ 2 dx ¢x!0 ¢x ¢x!0 x(x + ¢x) x1.4 Problemas 1. A posi»~o de um ponto P sobre um eixo x, ¶ dada por x(t) = 4t2 + 3t ¡ 2, com ca e t medido em segundos e x(t) em cent¶ ³metros. (a) Determine as velocidades m¶dias de P nos seguintes intervalos de tempo: e [1; 1; 2], [1; 1; 1], [1; 1; 01], [1; 1; 001]. (b) Determine a velocidade de P no instante t = 1 seg. (c) Determine os intervalos de tempo em que P se move no sentido positivo e aqueles em que P se move no sentido negativo. (P se move no sentido positivo ou negativo se x(t) aumenta ou diminui, respectivamente, µ medida a em que t aumenta.) 2. Se um objeto ¶ lan»ado verticalmente para cima, com velocidade inicial 110 m/seg, e c sua altura h(t), acima do ch~o (h = 0), ap¶s t segundos, ¶ dada (aproximada- a o e 2 mente) por h(t) = 110t ¡ 5t metros. Quais s~o as velocidades do objeto nos a instantes t = 3 seg e t = 4 seg? Em que instante o objeto atinge sua altura m¶xima? Em que instante atinge o ch~o? Com que velocidade atinge o ch~o? a a a 3. Calcule f 0 (x), para cada uma das fun»~es f (x) dadas abaixo, cumprindo as co seguintes etapas i. Primeiro desenvolva a express~o ¢f = f (x + ¢x) ¡ f (x), fazendo as simpli- a ¯ca»~es cab¶ co ³veis. ¢f f (x+¢x)¡f (x) ii. Em seguida obtenha, uma express~o simpli¯cada para a ¢x = ¢x . ¢f iii. Finalmente, calcule o limite lim . ¢x!0 ¢x (a) f(x) = 17 ¡ 6x (b) f(x) = 7x2 ¡ 5
  9. 9. ^Velocidade instantanea e derivadas 9 (c) f(x) = x3 + 2x p (d) f(x) = x 1 (e) f(x) = x+5 (f) f(x) = x5 6 (g) f(x) = 2 x 4. Usando as regras de deriva»~o estabelecidas, calcule as derivadas das seguintes ca fun»~es. co (a) f(t) = ¡6t3 + 12t2 ¡ 4t + 7 (b) f(t) = (3t + 5)2 Sugest~o: Primeiro desenvolva o quadrado. a (c) f(x) = (¡2x + 1)32 Sugest~o: Primeiro desenvolva o cubo. a (d) f(x) = (3x ¡7x+1)(x2 +x¡1) Sugest~o: Primeiro desenvolva o produto. 2 a (e) f(x) = x3 ¡ x2 + 15 5. Determine o dom¶ de cada uma das seguintes fun»~es. Represente-o como um ³nio co intervalo ou uma reuni~o de intervalos de R. No nosso contexto, o dom¶ de a ³nio uma fun»~o f ¶ o conjunto de todos os n¶meros reais x para os quais f(x) ¶ um ca e u e n¶mero real. u (a) f(x) = x3 ¡ 5x + 3 p (b) f(x) = ¡ 4 ¡ x p (c) f(x) = ¡ 4 ¡ x2 p (d) f(x) = x2 ¡ 5x + 4 1 (e) f(x) = p 2x ¡ x21.4.1 Respostas e sugest~es o 1. (a) 11; 8; 11; 4; 11; 04; 11; 004 (cm/seg). (b) 11 cm/seg (c) P se move no sentido positivo quando t > ¡3=8, e no sentido negativo quando t < ¡3=8 2. 80 m/seg e 70 m/seg. Em t = 11 seg. Em t = 22 seg, com a velocidade de ¡110 m/seg. 3. (a) i. ¢f = ¡6¢x ii. ¢f = ¡6 ¢x iii. f 0 (x) = ¡6 (b) i. ¢f = 14x¢x + 7(¢x)2 ii. ¢f = 14x + 7¢x ¢x
  10. 10. ^Velocidade instantanea e derivadas 10 iii. f 0 (x) = 14x (c) i. ¢f = (3x2 + 2)¢x + 3x(¢x)2 + (¢x)3 ii. ¢f = 3x2 + 2 + 3x(¢x) + (¢x)2 ¢x iii. f 0 (x) = 3x2 + 2 p p (d) i. ¢f = x + ¢x ¡ x p p ¢f x+¢x¡ x ii. ¢x = ¢x 1 ¢f iii. f 0 (x) = 2px . Sugest~o. a Ao calcular o limite lim , o leitor chegar¶ a ¢x!0 ¢x µ express~o 0=0, que n~o tem signi¯cado matem¶tico. Para contornar este a a a a problema, devemos ajeitar" ¢f , atrav¶s das simpli¯ca»~es dadas abaixo. ¢x e co p p p p p p ¢f x + ¢x ¡ x x + ¢x ¡ x x + ¢x + x = = ¢p p ¢x ¢x ¢x x + ¢x + x (x + ¢x) ¡ x 1 = p p =p p ¢x ¢ ( x + ¢x + x) x + ¢x + x p p p p Aqui ¯zemos uso da identidade ( a ¡ b)( a + b) = a ¡ b. 1 1 ¡¢x (e) i. ¢f = x+¢x+5 ¡ x+5 = (x+¢x+5)(x+5) ¢f ¡1 ii. ¢x = (x+¢x+5)(x+5) 1 iii. f 0 (x) = ¡ (x+5)2 (f) f 0 (x) = 5x4 12 (g) f 0 (x) = ¡ 3 x 4. (a) f 0 (t) = ¡18t2 + 24t ¡ 4 (b) f 0 (t) = 18t + 30 (c) f 0 (x) = ¡48x5 + 48x3 ¡ 12x (d) f 0 (x) = 12x3 ¡ 12x2 ¡ 18x + 8 (e) f 0 (x) = 3x2 ¡ 2x 5. (a) R (b) ]¡ 1; 4] (c) [¡2; 2] (d) ]¡ 1; 1] [ [4; +1[ (e) ]0; 2[

×