Cellular Glycolytic Pathways Lecture Presented by: Dr. Ozair Chaudhry ,   Ph.D.,CP Ag. (USA)., MOCT ( Canada) Albert Campb...
Introduction (Key Idea) <ul><li>Energy is a driving force for any physical /biological activity </li></ul><ul><li>How Cell...
Key Terms <ul><li>Metabolism is building and breaking of molecules </li></ul><ul><li>Metabolism is sum of Anabolism & Cata...
Energy Transfer <ul><li>Two mechanisms: </li></ul><ul><li>1 ) Substrate level Phosphorylation (forming  ATP in enzyme-cata...
GLUCOSE METABOLISM    ( 4 stages of Catabolism)
1. (Glycolysis & Fermentation) <ul><li>Anaerobic Respiration is 10 step Rxn in cytosol </li></ul><ul><li>6-C Glucose splic...
Glucose priming
G L y c o l y s I s ATP Glucose ----> 2 Pyruvic Acid (or pyruvate) + 2 net ATP + 4 hydrogens (2 NADH2)
Fermentation <ul><li>In many cells, if oxygen is not present, pyruvate is metabolized in a process called fermentation.   ...
Anaerobic Fermentation
2. Pyruvate Oxidation <ul><li>Aerobic Respiration (Mitochondria Matrix)  </li></ul><ul><li>2 mol. (3-C pyruvate)  2Acetyl ...
Pyruvate Oxidation <ul><li>In Mitochondrial Matrix (Aerobic Respiration) </li></ul><ul><li>2x (NADH) produced </li></ul>
3. Kreb Cycle <ul><li>8-step cyclic Rxn from oxaloacetate  (overhead/handout) </li></ul><ul><li>Glucose consumed completel...
Kr eb  Cyc l e NADH= 3, FADH=1, ATP= 1
Goal of ETC/Chemiosmosis <ul><li>To break down NADH and FADH 2 , </li></ul><ul><li>Pumping H +  into the outer compartment...
Goal of ETC/ Chemiosmosis
4. ETC & Chemiosmosis <ul><li>Electrons  in H atoms of (NADH, FADH 2 ) transferred to  </li></ul><ul><li>proteins in membr...
ETC/Chemiosmosis Conted. <ul><li>As such, Electro-chemical gradient create potential difference across inner membrane.  </...
ETC/ Chemiosmosis conted.   <ul><li>In ETC Protons accumulated in the intermembrane space by 3 proteins create  Electroche...
E nergy Account /Glucose Molecule Pathway Substrate level NADH/FADH2/Oxid-Phosphorylation Glycolysis   2 ATP 2 NADH cytoso...
The End <ul><li>Thank You All </li></ul>
Upcoming SlideShare
Loading in …5
×

A Classroom Lecture on Cell Metabolism. By: Dr. Ozair Chaudhry

2,761 views

Published on

Oxidative Phosphorylation, Carbohydrate Metabolism, Glycolysis, Kreb Cycle Cellular Energy Production.Chemiosmosis, ETC Electron Transport Chain.

1 Comment
4 Likes
Statistics
Notes
No Downloads
Views
Total views
2,761
On SlideShare
0
From Embeds
0
Number of Embeds
13
Actions
Shares
0
Downloads
147
Comments
1
Likes
4
Embeds 0
No embeds

No notes for slide

A Classroom Lecture on Cell Metabolism. By: Dr. Ozair Chaudhry

  1. 1. Cellular Glycolytic Pathways Lecture Presented by: Dr. Ozair Chaudhry , Ph.D.,CP Ag. (USA)., MOCT ( Canada) Albert Campbell Collegiate Institute (NS) Con.Ed. Toronto, Ontario August, 2008 © Reserved copyright 2008. Users advised to quote author’ reference
  2. 2. Introduction (Key Idea) <ul><li>Energy is a driving force for any physical /biological activity </li></ul><ul><li>How Cell produce energy from food (Macromolecules) </li></ul><ul><li>Energy can neither be created nor destroyed; however, </li></ul><ul><li>It transforms one form to another </li></ul><ul><li>Sun /radiant energy is the sole source in universe. </li></ul>
  3. 3. Key Terms <ul><li>Metabolism is building and breaking of molecules </li></ul><ul><li>Metabolism is sum of Anabolism & Catabolism </li></ul><ul><li>Glucose metabolism is series of reactions </li></ul><ul><li>In Eukaryote these reactions occur at special locations : </li></ul><ul><li>Cytoplasm & Mitochondria (special Enz.) </li></ul><ul><li>Free E transferred to e - carriers : NAD, FAD, ATP </li></ul>
  4. 4. Energy Transfer <ul><li>Two mechanisms: </li></ul><ul><li>1 ) Substrate level Phosphorylation (forming ATP in enzyme-catalyzed reaction ) E.g. </li></ul><ul><li>ADP+ PEP+ Enz. ATP +Pyruvate </li></ul><ul><li>(31 kJ Pot. En. Transferred to one ATP). </li></ul><ul><li>2 ) Oxidative Phosphorylation. (form ATP after series of Redox Rxn, O 2 final e- acceptor E.g. </li></ul><ul><li>NAD + removes 2 H + (2 protons & 2 e - ) from a portion of glucose </li></ul>
  5. 5. GLUCOSE METABOLISM ( 4 stages of Catabolism)
  6. 6. 1. (Glycolysis & Fermentation) <ul><li>Anaerobic Respiration is 10 step Rxn in cytosol </li></ul><ul><li>6-C Glucose splices in 2 (3C ) mol. Called Pyruvate ( pathway details on Overhead / handout ) </li></ul><ul><li>In ist 4 reactions 2 mol ATP used, (priming Glucose by adding P ) </li></ul><ul><li>After reaction # 5 both molecules of Glyceraldehyde-3-P undergo Rxn step 6-10 </li></ul><ul><li>Net: 4 ATP Prod - 2 ATP used= 2 ATP </li></ul><ul><li>Note: 2 NADH proceed for ATP later </li></ul>
  7. 7. Glucose priming
  8. 8. G L y c o l y s I s ATP Glucose ----> 2 Pyruvic Acid (or pyruvate) + 2 net ATP + 4 hydrogens (2 NADH2)
  9. 9. Fermentation <ul><li>In many cells, if oxygen is not present, pyruvate is metabolized in a process called fermentation. </li></ul><ul><li>Fermentation complements glycolysis by producing ATP continually in the absence of oxygen. </li></ul><ul><li>By oxidizing the NADH produced in glycolysis, fermentation regenerates NAD + , which can take part in glycolysis once again to produce more ATP. </li></ul><ul><li>1. Pyruvate 3-C Lactic acid </li></ul><ul><li>2. Pyruvate 2-C Ethanol </li></ul>
  10. 10. Anaerobic Fermentation
  11. 11. 2. Pyruvate Oxidation <ul><li>Aerobic Respiration (Mitochondria Matrix) </li></ul><ul><li>2 mol. (3-C pyruvate) 2Acetyl COA (Fig next) </li></ul><ul><li>Low E (COOH) is removed as Co 2 catalyzed by decarboxylase forming Acetate </li></ul><ul><li>S-containing Co-Enzyme attaches with Acetate forming Acetyl-COA (unstable bond) </li></ul><ul><li>Acetyl-COA enters in Kreb Cycle for further redox reactions if body needs ATP energy/ OR follows other path ways for fat and store. </li></ul>
  12. 12. Pyruvate Oxidation <ul><li>In Mitochondrial Matrix (Aerobic Respiration) </li></ul><ul><li>2x (NADH) produced </li></ul>
  13. 13. 3. Kreb Cycle <ul><li>8-step cyclic Rxn from oxaloacetate (overhead/handout) </li></ul><ul><li>Glucose consumed completely hence 6-Co 2 released as cell waste, E is saved in molecules. </li></ul><ul><li>Summary (Fate of Glucose): </li></ul><ul><li>CCCCCC 2(CCC) 2(CC+Co 2 )--- </li></ul><ul><li>(Glucose) (Pyruvate) acetylCOA & 2Co2 </li></ul><ul><li>4(Co 2 ) waste, </li></ul><ul><li>Free Eng: ATP, Co Enz: NADH, FADH 2 transformed to ATP in 4th stage ETC </li></ul>glycolysis Pyruvate Oxidation Kreb cycle
  14. 14. Kr eb Cyc l e NADH= 3, FADH=1, ATP= 1
  15. 15. Goal of ETC/Chemiosmosis <ul><li>To break down NADH and FADH 2 , </li></ul><ul><li>Pumping H + into the outer compartment of the mitochondria </li></ul><ul><li>In this reaction, the ETC creates a gradient which is used to produce ATP </li></ul><ul><li>Electron Transport phosphorylation typically produces 32 ATP's </li></ul>
  16. 16. Goal of ETC/ Chemiosmosis
  17. 17. 4. ETC & Chemiosmosis <ul><li>Electrons in H atoms of (NADH, FADH 2 ) transferred to </li></ul><ul><li>proteins in membrane of mitochondria called ETC-chain. </li></ul><ul><li>Components of ETC placed in increasing electronegativity order E.g. </li></ul><ul><li>Weakest e - attracting NADH-dehdrogenase first and strongest cytochrome-oxidase last in chain finally to O 2 . </li></ul><ul><li>Conted./ </li></ul>
  18. 18. ETC/Chemiosmosis Conted. <ul><li>As such, Electro-chemical gradient create potential difference across inner membrane. </li></ul><ul><li>Protons move through ATP synthase towards lower conc. of H + , Free energy stored in electrochemical gradient is consumed to make ATP </li></ul><ul><ul><ul><ul><li>ATP ase </li></ul></ul></ul></ul><ul><li>ADP+Pi ATP </li></ul><ul><li>The above process is called CHEMIOSMOSIS . (Overhead display) </li></ul>
  19. 19. ETC/ Chemiosmosis conted. <ul><li>In ETC Protons accumulated in the intermembrane space by 3 proteins create Electrochemical gradient: (Electrical component by increasing ( + charge) and chemical component by increasing conc.of H protons) </li></ul><ul><li>Free E Provided by NADH (-222 kJ/mol NADH) drives Creation of ELECTROCHEMICAL GRADIANT. </li></ul><ul><li>H + being unable to diffuse through phospholipid bilayer, are forced by special channel ATP-synthase </li></ul>
  20. 20. E nergy Account /Glucose Molecule Pathway Substrate level NADH/FADH2/Oxid-Phosphorylation Glycolysis 2 ATP 2 NADH cytosolic (changes to 2 FADH) 2 (2ATP) = 04 ATP when enters to ETC Pyruvate Oxidation ------ 2 NADH 2 (3 ATP) = 06 ATP Kreb Cycle 2ATP 6 NADH 6 (3ATP) = 18 ATP 2 FADH 2 2 (2ATP) = 04 ATP ------------------------------------------------------------------------------------------------------------------------------------ Sub Total= 4 ATP 32 ATP Grand Total= -------------------------------------------------- 36 ATP Rule: Each FADH 2 generates 2 ATP, and each NADH forms 3 ATP
  21. 21. The End <ul><li>Thank You All </li></ul>

×