Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
@canard0328
t t
2
r
Tn
t
t
or
3
http://nbviewer.ipython.org/gist/canard0328/6f44229365f53b7bd30f/
http://nbviewer.ipython.org/gist/canard0328/a5911ee5b4...
4
Sample
Explore
Modify
Model
Assess
Sample Explore Modify Model Assess
t
t r
t
SEMMA
5
CRISPLDM CRossLIndustryNStandardNProcessNforNDataNMining
BusinessNUnderstanding
DataNUnderstanding
DataNPreparation
Mode...
6
t
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3.csv
(DataNobtainedNfromNhttp://biostat.mc.vanderbilt....
7
t
t
t
t
t
Sample Explore Modify
Assess Model
8
() ( ( ) )
) ( ()
(
( ) (
( ) (
÷
9
r
t r
r
r
10
11
1. t
2. t
3. t
4. t
12
t
t
t
t
Sample Explore Modify
Assess Model
13
t rT
14
u
nT t T
10of0K 15
N t NL1 t
Feature hashing /=Hashing trick 16
FeatureNhashing t
Nt v t
xN:=NnewNvector[N]
forNfNinNfeatures:
hN:=Nhash(f)
x[hNmodNN]N...
(Curse=of=dimensionality) 17
t
r
g r ur n
u
t e
e e
t T Tn u
t e
(Standardization) 18
xt 10 i
t n
(Standardization) 19
a
(Standardization)
σ
µ−
=
x
z
σ
µ xt
xt
P 1 e
20
t r
(Feature selection)
t r t e
(ForwardNstepwiseNselection)
(BackwardNstepwiseNselection)
21
UglyNducklingNtheorem
T t t t t u
t t t t T
t
22
4. t
5. t
6. t
23
u
“MachineNlearningNisNtheNscienceNofNgettingNcomputersNtoN
actNwithoutNbeingNexplicitlyNprogrammed.”NNNNNNNNNNNNNNNNNN...
24
supervisedNlearning
t
• classification
• regression
unsupervisedNlearning
u t
•
•
• outlierNdetection
25
gt t
• semiLsupervisedNlearning
• reinforcementNlearning
• activeNlearning
• onlineNlearning
• transferNlearning
26
•
•
•
• k
•
•
•
•
•
27
r
• KLmeansN
•
• Apriori
• OneLclassNSVM
28
nu
TnT t
rT
r rT
29
x
y
εββββ +++++= ii xxxy !22110
u
generalizedNlinearNmodel
u t
30
KLmeans
KLmeans u
t
n
T
GaussianNmixtureNmodel
t
31
t T
÷
u n T t T t
32
7.
3333
Sample Explore Modify
Assess Model
34
(MeanNabsoluteNerror)
T T
(MeanNsquare(d)Nerror)
T T
RootNMeanNSquare(d)N Error
R2(CoefficientNofNdetermination)
÷ T e
...
35
(Accuracy)
(ErrorNrate)
1N
1 t t 100 t
e t u99%
u T T i
36
(ConfusionNmatrix)
(Positive)   26 5 8 6
(TrueNpositiveN:NTP) (FalseNnegativeN:NFN)
(FalseNpositiveN:NFP)   4: 6 96 5 8...
37
(Precision)
TP/(TPN+NFP)
tt
(Recall)
TP/(TPN+NFN)
t
F (F1Nscore,NFLmeasure)
2 ( )N/N( ) P 2
3 TP FN
2 FP 42
38
(True Positive Rate)
TP/(TPN+NFN)
t
(False Positive Rate)
FP/(FPN+NTN)
t n
P 2
3 TP FN
2 FP 42
39
1 t t 100 t
e
(Positive) (Negative)
0 100
0 9900
0.99
0
0
F 0
40
t u
e r
T
t
rT e T e
SMOTE
u r rT T...
41
u
t T e
u r r
ROC
t r
t
AUC
ROC t t 1.0
42
ROC AUC
43
n
r
T t u
rT
>Nclf =NSVC().fit(X,Ny)
44
u
e
>Nclf =NSVC(kernel=‘rbf’,NC=1.0Ngamma=0.1).fit(X,Ny)
45
r t
T t e
46
t
r t( : t )u r
g rT tu n(10L2,10L1,100,101,102)
u
n
47
n
r
0.0 F 1.0 i
r
48
t 0.0 u t
49
(OverNfitting)
n
n T u T
e n
t e
e
t T T r
T eT
50
e r e rT
(Regularization) t
Lasso SVMr
t t
r
e n rT(UnderNfitting)
51
(Cross validation)
e
1. B E A
2. A,C E B
3. A,B,D,E C
4. A C,E D
5. A D E
6. 5t
5 5LfoldNcrossNvalidation
52
t
K
1 (LeaveLoneLout cross validation)
(StratifiedNcrossNvalidation)
t t
K
t
a r t e t
53
8.
9.
54
t
ε=N(0,Nσ2)
σ2+Bias2+Variance
Bias( )
t e
Variance( )
e
55
t
ε
t
56
ε
t
u T tv u T →
1
57
ε
t
T →
58
u t
t T
(OverNfitting)
t T
UnderNfitting
59
r ( )
( )
60
( ) T( T)
t T
t T
t nTrT
61
T
t T
t T
62
r e
t T t e
e
r e
63
10.
11. t
12. t
64
(EnsembleNlearning)
• t t
• Stacking Bagging Boosting
• u
DeepNlearning
• NeuralNnetworkst
• r
… 65
https://www.linkedin.com/pulse/inconvenientLtruthLdataLscienceLkamilLbartocha
66
MALSS
(MachineNLearningNSupportNSystem)
t e
Python
•
•
•
•
•
67
MALSS
> pip install –U malss
> from malss import MALSS
> clf = MALSS('classification‘, lang=‘jp’)
> clf.fit(X, y, ‘repo...
68
MALSS
69
MALSS
70
F.NProvost
Coursera:=Machine=Learning
AndrewNNg https://www.coursera.org/course/ml
scikit0learn=Tutorials
http://scikit...
71
MALSS=(Machine=Learning=Support=System)
https://pypi.python.org/pypi/malss/
https://github.com/canard0328/malss
Python ...
72
1.
SEMMA CRISPLDM KDD KKD
2. t
t T T t
3.
4.
Upcoming SlideShare
Loading in …5
×

機械学習によるデータ分析 実践編

15,359 views

Published on

演習用のスクリプトは以下にあります.
Python
http://nbviewer.ipython.org/gist/canard0328/a5911ee5b4bf1a07fbcb/
https://gist.github.com/canard0328/07a65584c134a2700725
R
http://nbviewer.ipython.org/gist/canard0328/6f44229365f53b7bd30f/
https://gist.github.com/canard0328/b2f8aec2b9c286f53400

Published in: Data & Analytics
  • DOWNLOAD THAT BOOKS/FILE INTO AVAILABLE FORMAT - (Unlimited) ......................................................................................................................... ......................................................................................................................... Download FULL PDF EBOOK here { http://bit.ly/2m77EgH } ......................................................................................................................... .............. Browse by Genre Available eBooks ......................................................................................................................... accessibility Books Library allowing access to top content, including thousands of title from favorite author, plus the ability to read or download a huge selection of books for your pc or smartphone within minutes Christian, Classics, Comics, Contemporary, Cookbooks, Art, Biography, Business, Chick Lit, Children's, Manga, Memoir, Music, Science, Science Fiction, Self Help, History, Horror, Humor And Comedy, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult, Crime, Ebooks, Fantasy, Fiction, Graphic Novels, Historical Fiction, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance,
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • DOWNLOAD THI5 BOOKS INTO AVAILABLE FORMAT (Unlimited) ......................................................................................................................... ......................................................................................................................... Download Full PDF EBOOK here { http://bit.ly/2m6jJ5M } ......................................................................................................................... Download Full EPUB Ebook here { http://bit.ly/2m6jJ5M } ......................................................................................................................... ACCESS WEBSITE for All Ebooks ......................................................................................................................... Download Full PDF EBOOK here { http://bit.ly/2m6jJ5M } ......................................................................................................................... Download EPUB Ebook here { http://bit.ly/2m6jJ5M } ......................................................................................................................... Download doc Ebook here { http://bit.ly/2m6jJ5M } ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... .............. Browse by Genre Available eBooks ......................................................................................................................... Art, Biography, Business, Chick Lit, Children's, Christian, Classics, Comics, Contemporary, Cookbooks, Crime, Ebooks, Fantasy, Fiction, Graphic Novels, Historical Fiction, History, Horror, Humor And Comedy, Manga, Memoir, Music, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance, Science, Science Fiction, Self Help, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult,
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • DOWNLOAD THI5 BOOKS INTO AVAILABLE FORMAT (Unlimited) ......................................................................................................................... ......................................................................................................................... Download Full PDF EBOOK here { http://bit.ly/2m6jJ5M } ......................................................................................................................... Download Full EPUB Ebook here { http://bit.ly/2m6jJ5M } ......................................................................................................................... ACCESS WEBSITE for All Ebooks ......................................................................................................................... Download Full PDF EBOOK here { http://bit.ly/2m6jJ5M } ......................................................................................................................... Download EPUB Ebook here { http://bit.ly/2m6jJ5M } ......................................................................................................................... Download doc Ebook here { http://bit.ly/2m6jJ5M } ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... .............. Browse by Genre Available eBooks ......................................................................................................................... Art, Biography, Business, Chick Lit, Children's, Christian, Classics, Comics, Contemporary, Cookbooks, Crime, Ebooks, Fantasy, Fiction, Graphic Novels, Historical Fiction, History, Horror, Humor And Comedy, Manga, Memoir, Music, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance, Science, Science Fiction, Self Help, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult,
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • DOWNLOAD THI5 BOOKS INTO AVAILABLE FORMAT (Unlimited) ......................................................................................................................... ......................................................................................................................... Download Full PDF EBOOK here { http://bit.ly/2m6jJ5M } ......................................................................................................................... Download Full EPUB Ebook here { http://bit.ly/2m6jJ5M } ......................................................................................................................... ACCESS WEBSITE for All Ebooks ......................................................................................................................... Download Full PDF EBOOK here { http://bit.ly/2m6jJ5M } ......................................................................................................................... Download EPUB Ebook here { http://bit.ly/2m6jJ5M } ......................................................................................................................... Download doc Ebook here { http://bit.ly/2m6jJ5M } ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... .............. Browse by Genre Available eBooks ......................................................................................................................... Art, Biography, Business, Chick Lit, Children's, Christian, Classics, Comics, Contemporary, Cookbooks, Crime, Ebooks, Fantasy, Fiction, Graphic Novels, Historical Fiction, History, Horror, Humor And Comedy, Manga, Memoir, Music, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance, Science, Science Fiction, Self Help, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult,
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • DOWNLOAD THIS BOOKS INTO AVAILABLE FORMAT (Unlimited) ......................................................................................................................... ......................................................................................................................... Download Full PDF EBOOK here { http://bit.ly/2m77EgH } ......................................................................................................................... Download Full EPUB Ebook here { http://bit.ly/2m77EgH } ......................................................................................................................... ACCESS WEBSITE for All Ebooks ......................................................................................................................... Download Full PDF EBOOK here { http://bit.ly/2m77EgH } ......................................................................................................................... Download EPUB Ebook here { http://bit.ly/2m77EgH } ......................................................................................................................... Download doc Ebook here { http://bit.ly/2m77EgH } ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... .............. Browse by Genre Available eBooks ......................................................................................................................... Art, Biography, Business, Chick Lit, Children's, Christian, Classics, Comics, Contemporary, Cookbooks, Crime, Ebooks, Fantasy, Fiction, Graphic Novels, Historical Fiction, History, Horror, Humor And Comedy, Manga, Memoir, Music, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance, Science, Science Fiction, Self Help, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult,
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

機械学習によるデータ分析 実践編

  1. 1. @canard0328 t t
  2. 2. 2 r Tn t t or
  3. 3. 3 http://nbviewer.ipython.org/gist/canard0328/6f44229365f53b7bd30f/ http://nbviewer.ipython.org/gist/canard0328/a5911ee5b4bf1a07fbcb/ https://gist.github.com/canard0328/07a65584c134a2700725 https://gist.github.com/canard0328/b2f8aec2b9c286f53400
  4. 4. 4 Sample Explore Modify Model Assess Sample Explore Modify Model Assess t t r t SEMMA
  5. 5. 5 CRISPLDM CRossLIndustryNStandardNProcessNforNDataNMining BusinessNUnderstanding DataNUnderstanding DataNPreparation Modeling Evaluation Deployment KDD KnowledgeNDiscoveryNinNDatabases Selection Preprocessing Transformation DataNMining Interpretation/Evaluation KKD Keiken,NKan andNDokyo
  6. 6. 6 t http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3.csv (DataNobtainedNfromNhttp://biostat.mc.vanderbilt.edu/DataSets) > data = read.csv(“titanic3.csv”, + stringsAsFactors=F, na.strings=c("","NA")) >>> import pandas as pd >>> data = pd.read_csv(‘titanic3.csv') Sample Explore Modify Assess Model
  7. 7. 7 t t t t t Sample Explore Modify Assess Model
  8. 8. 8 () ( ( ) ) ) ( () ( ( ) ( ( ) ( ÷
  9. 9. 9 r t r r r
  10. 10. 10
  11. 11. 11 1. t 2. t 3. t 4. t
  12. 12. 12 t t t t Sample Explore Modify Assess Model
  13. 13. 13 t rT
  14. 14. 14 u nT t T
  15. 15. 10of0K 15 N t NL1 t
  16. 16. Feature hashing /=Hashing trick 16 FeatureNhashing t Nt v t xN:=NnewNvector[N] forNfNinNfeatures: hN:=Nhash(f) x[hNmodNN]N+=N1 http://en.wikipedia.org/wiki/Feature_hashing
  17. 17. (Curse=of=dimensionality) 17 t r g r ur n u t e e e t T Tn u t e
  18. 18. (Standardization) 18 xt 10 i t n
  19. 19. (Standardization) 19 a (Standardization) σ µ− = x z σ µ xt xt P 1 e
  20. 20. 20 t r (Feature selection) t r t e (ForwardNstepwiseNselection) (BackwardNstepwiseNselection)
  21. 21. 21 UglyNducklingNtheorem T t t t t u t t t t T t
  22. 22. 22 4. t 5. t 6. t
  23. 23. 23 u “MachineNlearningNisNtheNscienceNofNgettingNcomputersNtoN actNwithoutNbeingNexplicitlyNprogrammed.”NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN AndrewNNg u t T t e e 23 Sample Explore Modify Assess Model
  24. 24. 24 supervisedNlearning t • classification • regression unsupervisedNlearning u t • • • outlierNdetection
  25. 25. 25 gt t • semiLsupervisedNlearning • reinforcementNlearning • activeNlearning • onlineNlearning • transferNlearning
  26. 26. 26 • • • • k • • • • •
  27. 27. 27 r • KLmeansN • • Apriori • OneLclassNSVM
  28. 28. 28 nu TnT t rT r rT
  29. 29. 29 x y εββββ +++++= ii xxxy !22110 u generalizedNlinearNmodel u t
  30. 30. 30 KLmeans KLmeans u t n T GaussianNmixtureNmodel t
  31. 31. 31 t T ÷ u n T t T t
  32. 32. 32 7.
  33. 33. 3333 Sample Explore Modify Assess Model
  34. 34. 34 (MeanNabsoluteNerror) T T (MeanNsquare(d)Nerror) T T RootNMeanNSquare(d)N Error R2(CoefficientNofNdetermination) ÷ T e 0( T) 1( T) T r
  35. 35. 35 (Accuracy) (ErrorNrate) 1N 1 t t 100 t e t u99% u T T i
  36. 36. 36 (ConfusionNmatrix) (Positive)  26 5 8 6 (TrueNpositiveN:NTP) (FalseNnegativeN:NFN) (FalseNpositiveN:NFP)  4: 6 96 5 8 6 / 42 T nT v t r
  37. 37. 37 (Precision) TP/(TPN+NFP) tt (Recall) TP/(TPN+NFN) t F (F1Nscore,NFLmeasure) 2 ( )N/N( ) P 2 3 TP FN 2 FP 42
  38. 38. 38 (True Positive Rate) TP/(TPN+NFN) t (False Positive Rate) FP/(FPN+NTN) t n P 2 3 TP FN 2 FP 42
  39. 39. 39 1 t t 100 t e (Positive) (Negative) 0 100 0 9900 0.99 0 0 F 0
  40. 40. 40 t u e r T t rT e T e SMOTE u r rT T...
  41. 41. 41 u t T e u r r ROC t r t AUC ROC t t 1.0
  42. 42. 42 ROC AUC
  43. 43. 43 n r T t u rT >Nclf =NSVC().fit(X,Ny)
  44. 44. 44 u e >Nclf =NSVC(kernel=‘rbf’,NC=1.0Ngamma=0.1).fit(X,Ny)
  45. 45. 45 r t T t e
  46. 46. 46 t r t( : t )u r g rT tu n(10L2,10L1,100,101,102) u n
  47. 47. 47 n r 0.0 F 1.0 i r
  48. 48. 48 t 0.0 u t
  49. 49. 49 (OverNfitting) n n T u T e n t e e t T T r T eT
  50. 50. 50 e r e rT (Regularization) t Lasso SVMr t t r e n rT(UnderNfitting)
  51. 51. 51 (Cross validation) e 1. B E A 2. A,C E B 3. A,B,D,E C 4. A C,E D 5. A D E 6. 5t 5 5LfoldNcrossNvalidation
  52. 52. 52 t K 1 (LeaveLoneLout cross validation) (StratifiedNcrossNvalidation) t t K t a r t e t
  53. 53. 53 8. 9.
  54. 54. 54 t ε=N(0,Nσ2) σ2+Bias2+Variance Bias( ) t e Variance( ) e
  55. 55. 55 t ε t
  56. 56. 56 ε t u T tv u T → 1
  57. 57. 57 ε t T →
  58. 58. 58 u t t T (OverNfitting) t T UnderNfitting
  59. 59. 59 r ( ) ( )
  60. 60. 60 ( ) T( T) t T t T t nTrT
  61. 61. 61 T t T t T
  62. 62. 62 r e t T t e e r e
  63. 63. 63 10. 11. t 12. t
  64. 64. 64 (EnsembleNlearning) • t t • Stacking Bagging Boosting • u DeepNlearning • NeuralNnetworkst • r
  65. 65. … 65 https://www.linkedin.com/pulse/inconvenientLtruthLdataLscienceLkamilLbartocha
  66. 66. 66 MALSS (MachineNLearningNSupportNSystem) t e Python • • • • •
  67. 67. 67 MALSS > pip install –U malss > from malss import MALSS > clf = MALSS('classification‘, lang=‘jp’) > clf.fit(X, y, ‘report_output_dir') > clf.make_sample_code('sample_code.py')
  68. 68. 68 MALSS
  69. 69. 69 MALSS
  70. 70. 70 F.NProvost Coursera:=Machine=Learning AndrewNNg https://www.coursera.org/course/ml scikit0learn=Tutorials http://scikitLlearn.org/stable/tutorial/ Tutorial:=Machine=Learning=for=Astronomy=with=Scikit0learn http://www.astroml.org/sklearn_tutorial/
  71. 71. 71 MALSS=(Machine=Learning=Support=System) https://pypi.python.org/pypi/malss/ https://github.com/canard0328/malss Python MALSS Qiita http://qiita.com/canard0328/items/fe1ccd5721d59d76cc77 Python MALSS Qiita http://qiita.com/canard0328/items/5da95ff4f2e1611f87e1 Python MALSS Qiita http://qiita.com/canard0328/items/3713d6758fe9c045a19d
  72. 72. 72 1. SEMMA CRISPLDM KDD KKD 2. t t T T t 3. 4.

×