Published on

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide


  1. 1. Smart Grids A. Clerici Honorary Chairman WEC ItalyChairman Study Group «Survey of Energy Resources and Technologies» Senior Advisor ABB Italy
  2. 2. • World population now 7 billion people: (300000 births/day).• In the last 10 years: population +12%; primary energy +20%; electricity +30%• 1.6 billion human beings with no electricity.• Electric Energy consumption in 2030 will be double quantity of 2007 with 44% of primary energy resources for its production (36% in 2007). Worldwide 40% of CO2 emissions are caused by production of electricity : 10 billion t/year. Europe quota - part: 14%; Italy 2%. Electricity is more and more important.• In China during the period 2007-2009 commissioned 300 MW/day of new power plants (100 GW/year) of which 80% coal-fueled; CO2 emissions from only these new plants is far beyond global emissions of all the EU 27 power plants. EC reduction target of CO2 is 20% in 2020, equal to 1-2% of the yearly emissions increase, as from today up to 2020, in the rest of the world. ENERGY and ENVIRONMENTAL PROBLEMS are GLOBAL EVERYONE MUST CONTRIBUTE
  3. 3. What are the prevailing trends impacting energy? • Growth in population, increased urbanization/large cities, • Living standards and demand increase especially in LDC’s, • CO2 emissions
  4. 4. Electricity Around the WorldIndustrialised nations:Transformation of the energy system from vertical integration tounbundled situation: generation (market)- transmission / distribution(concessions) - sales (market)  Environmental concerns - Market rules - FinancingGrowing economies:Quick development of the energy system with local/cheap energysources  Making energy availablePoor regions:Fight against energy poverty  Political instability - Financing
  5. 5. An Electrical system ranges from powergeneration, transmission, distribution to finalconsumption.Key issue is the reliable and economic flow ofenergy at any time from any generating plant toany load.
  6. 6. Deregulation and the opening of markets havepushed for unbundling of: • Production P • Transmission T • Distribution D • Sales Sand this with proliferation of entities, splitresponsibilities, different / conflicting interests.
  7. 7. On the other hand: • Environmental issues. • Increased of RES penetration (both large/bulk and distributed). • Increased demand response systems. • The always increasing difficulty to build new transmission lines and substations. • The development of Technologies in both the electric “power industry” and in the ICT arena.are pushing for a better and indispensable integration ofthe operation of P - T - D.
  9. 9. A smart grid is an evolved electrical system from any type ofproduction to consumers that manages the electricityproduction, transmission, distribution and demand throughmeasuring, communicating, elaborating and controlling allthe on line quantities of interest with transparent infoaccessible to all the involved stakeholders; this to optimizethe valorization of assets and the reliable and economicoperation allowing adequate global savings with smartsharing of cost and benefits among all the involved. And who is going to pay is a key issue.
  10. 10. For smart grids: • Advanced hardware (power system infrastructures) • Advanced ICT’s (and a terrific number of data are involved)are the key ingredientsICT is an asset but… without adequate infrastructures doesnot solve the problem; ICT cannot control the flow ofelectrons if there are no adequate overhead lines (OHTL’s)and substations.But also vice versa, there is no optimum utilization of powersystem infrastructures without ICT.
  11. 11. Let us however consider the 2 differentsubchapters as usually considered also by EC:• Supergrids / Interconnections• Distribution
  12. 12. Evolution of the role of interconnections Reserve capacity sharing, peak shaving and mutual support facing large perturbations Energy exchanges on the basis of pre - established contracts (usually long term contracts) Cross-border exchanges based on short - mid term contracts Mean to foster a higher penetration of RES with consequent reduction of GHG emission Enhanced profitability of large interconnections when accounting for CO2 emission costs: optimum use of sustainable resources
  13. 13. FACTS: Flexible Alternating Current Trans. Systems• A variety of power electronic equipment for application in transmission systems has been developed over the last few decades. The incentive has been the need for:  better load flow control;  improved system dynamics;  and better voltage control.• FACTS devices help in increasing transport capacity. The basic idea of the FACTS action is illustrated in the scheme below
  14. 14. Power flow control and actions of FACTS devices (source CIGRE TF-38-01.06)
  15. 15. Considering the key bottle neck in electrical powersystems is transmission, the quick application of smartgrid concepts to transmission should be implementedas soon as possible to maximize the utilization ofexisting assets.And smart grid concepts include “smart upgrading” ofexisting transmission line corridors and optimumutilization of substations with relevant transformers.
  16. 16. For upgrading of existing OHTL corridors, onecould adopt: • New special conductors with higher current capacity and less sags; • Modification / substitution of an existing AC line with another one at higher voltage; • Transformation of an AC line to a DC one with substantial power increase.
  17. 17. Possible transformation of Italian 220 kV AC lines to HVDC
  18. 18. Better utilization of existing OHTL’s (dynamic loading)OHTL’s have: • a summer current limit (and consequent power) valid for all the summer months/hours; • a winter current limit valid for all the winter months/hours.based on critical / extreme ambient wind / temperature to avoidexcessive sags of conductors.An on line monitoring of conductor temperature, sags and ambientconditions (LTM Line Thermal Monitoring): • allows larger transfer capacity in the great majority of hours; • allows an alleviation of N-1 conditions (to be reconsidered). Effect on standards and operating rules
  19. 19. Better utilization of trafos• Also trafos have pass-through power limits depending from ambient conditions and actual hot spot temperature.• Trafos are usually working in parallel at 50% of load to avoid overloading of the parallel one in case of a trafo fault.• Adequate monitoring and diagnostics systems and control of ambient and winding hot spot temperature would increase the utilization of the machines both in normal and emergency conditions; this minimizes: − Possible consequences on the transmission system from transformer faults; − Restrictions of operation for possible overloads that are not overloads in many specific conditions.
  20. 20. Distribution SystemsThey are strongly affected by the spread ofpossible important distributed generation.For distribution and the usual “Smart Gridapproach” I do not enter in details consideringwhat is being presented by other friends.