Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Camera Culture Ramesh  Raskar Camera Culture MIT Media Lab http://raskar.info http://cameraculture.info Ramesh Raskar Asso...
Film-like  Digital Photography
 
Cameras Phones are Everywhere Kush R. Varshney, “ Jagannath Temple ,” Puri, Orissa, India, Dec. 2007.
Wish List Today <ul><li>Consumers </li></ul><ul><ul><li>Super-human vision </li></ul></ul><ul><ul><li>Microscope like reso...
Computational Photography Computational Illumination Computational Camera Scene :  8D Ray Modulator Display Generalized Se...
Can you look around a corner ?
 
Convert LCD into a big  flat camera ?
 
Fernald,  Science [Sept 2006] Shadow Refractive Reflective
Mimicking the Human Eye Lens Detector Pixels Image Slide by Shree Nayar Reproduce for the eye
Where are the ‘camera’s?
Where are the ‘camera’s?
<ul><li>We focus on creating tools to  better capture and share visual information via a  new class of imaging platforms  ...
What is the Media Lab? <ul><li>A Graduate Program in the Media Arts & Sciences Houses ~150 students and 30 PIs </li></ul><...
Media Lab Vision Biomechatronics Neuroengineering Smart Fabrics Rethinking Cameras Human 2.0 Multimedia Ubiquitous Computi...
Close Ties With Industry 03/08/10 R E S E A R C H  S T R A T E G Y Our 65 corporate sponsors include some of the most crea...
Center for Future Storytelling <ul><li>Launched with 7-year, $25M funding with  Plymouth Rock Studios </li></ul><ul><ul><l...
Smart Cities What if  cars could stack like shopping carts in cities? Ryan Chin and Bill Mitchell
ADAPTABILTIY Hyper -  Adaptability Bio- Mechatronics Music/Mind/ Health People - Sense Sociable  Robots Neuro- Media HUMAN...
Camera Culture Ramesh  Raskar Ramesh Raskar Associate Professor, MIT Media Lab http://raskar.info New Emerging Technologie...
Medical Imaging Today ..  <ul><li>http://info.med.yale.edu/intmed/cardio/imaging/techniques/ct_imaging/ </li></ul>
Self Evaluation of Eye
 
Self Evaluation of Eye
 
 
 
What are the problems with ‘real’ photo in conveying information ? Why do we hire artists to draw what can be photographed ?
Shadows Clutter Many Colors Highlight Shape Edges Mark moving parts Basic colors
Cartoon Camera Using Depth Edges
 
 
 
 
Canny Intensity  Edge Detection Our Method Photo Result
 
Convert LCD into a big  flat camera ? Beyond Multi-touch: 3D Gestures
Large Virtual Camera for  3D Interactive HCI and  Video Conferencing Matthew Hirsch, Henry Holtzman Doug Lanman, Ramesh Ra...
Touch + Hover using Thin, Depth Sensing LCD Sensor
Sensing Depth from    Array of Virtual Eyes in LCD
Photos of tomorrow:  computed not recorded http://scalarmotion.wordpress.com/2009/03/15/propeller-image-aliasing/
Synthesis Low Level Mid Level High Level Hyper realism Raw Angle, spectrum aware Non-visual Data, GPS Metadata Priors Comp...
Camera Culture Ramesh  Raskar <ul><li>Understand the World </li></ul><ul><li>Identify/recognize Objects </li></ul><ul><li>...
Can you ‘see’ around a corner ?
Femto-Photography:  Higher Dimensional Capture FemtoFlash UltraFast Detector Computational Optics Serious Sync
Application:  Rescue and Planning
 
Bokode
 
Defocus blur of Bokode
Coding in Angle Mohan, Woo, Smithwick, Hiura, Raskar [Siggraph 2009]
<ul><li>circle of confusion    circle of information </li></ul>camera Bokode (angle) Quote suggested by Kurt Akeley Encod...
<ul><li>Product labels </li></ul>Street-view  Tagging
cell-phone camera close to the Bokode (10,000+ bytes of data)
Camera Culture Ramesh  Raskar <ul><li>Understand the World </li></ul><ul><li>Identify/recognize Objects </li></ul><ul><li>...
Visual Computing <ul><li>Forward  (Synthesize) </li></ul><ul><ul><li>Special Effects, Image Processing, Design </li></ul><...
Power of the Processor  Power of the Network Power of People 1985 1995 2005 2015 Powershifts
Crowdsourcing http://www.wired.com/wired/archive/14.06/crowds.html Amazon Mechanical Turk:  Steve Fossett search ReCAPTCHA...
Visual Social Computing <ul><li>Image-based commerce </li></ul><ul><ul><li>By the people, for the people, of the people </...
Cameras in Developing Countries http://news.bbc.co.uk/2/hi/south_asia/7147796.stm Community news program run by village wo...
Developing Countries:  CAMForms <ul><li>Paper forms with barcodes </li></ul><ul><li>83-bit 2D codes (including seven bits ...
User Generated Content Visualization <ul><li>Google Map overlayed with geo-tagged photos </li></ul><ul><li>Image-based Mas...
Socio-Political Goals: B’Tselem From websiteof : Israeli Information Center for Human Rights in the Occupied Territories
Truth in Images From Hany Farid LA Times March’03
Vision thru tongue http://www.pbs.org/kcet/wiredscience/story/97-mixed_feelings.html Solutions for the Visually Challenged...
Camera Culture Ramesh  Raskar How will the  next billion cameras  change the social culture ? How can we augment the camer...
MIT Media Lab Workshops <ul><li>Session before lunch (12:15 to 1pm): </li></ul><ul><li>How to Invent? </li></ul><ul><li>He...
Camera Culture Ramesh  Raskar Ramesh Raskar Associate Professor, MIT Media Lab http://raskar.info New Emerging Technologie...
END Part 1
Start Part 2
Camera Culture Ramesh  Raskar Camera Culture MIT Media Lab http://raskar.info http://cameraculture.info Ramesh Raskar Asso...
After  X , what is ne X t How to Invent? Ramesh Raskar, MIT Media Lab
X d X++ X X+Y X X ne X t Ramesh Raskar, MIT Media Lab
Simple Exercise ..  <ul><li>Image Compression </li></ul><ul><ul><li>Save Bandwidth and storage </li></ul></ul>What is ne X t
Strategy #1:  X d <ul><li>Extend it to next dimension (or some other) dimension </li></ul><ul><ul><li>Flickr to Youtube </...
Strategy #2:  X+Y <ul><li>Fusion of the dissimilar </li></ul><ul><ul><li>More dissimilar, more spectacular the output </li...
Prototype camera <ul><li>4000  × 4000 pixels  ÷  292 × 292 lenses  =  14 × 14 pixels per lens </li></ul>Contax medium form...
Example of digital refocusing
Imaging in Sciences:  Computer Tomography <ul><li>http://info.med.yale.edu/intmed/cardio/imaging/techniques/ct_imaging/ </...
Self Evaluation of Eye
 
Strategy #3:  X  Do exactly the opposite <ul><li>Processing, Memory, Bandwidth </li></ul><ul><ul><li>In Computing world, i...
<ul><li>Toll Free calls </li></ul><ul><li>Reverse Auction </li></ul>
Power of the Processor  Power of the Network Power of People 1985 1995 2005 2015 Powershifts
Larval Trematode Worm
Strategy #4:  X  <ul><li>Given a Hammer .. </li></ul><ul><ul><li>Find all the nails </li></ul></ul><ul><ul><li>Sometimes e...
Strategy #5:  X  <ul><li>Given a nail,  </li></ul><ul><ul><li>Find all hammers </li></ul></ul><ul><ul><li>Sometimes even s...
Strategy #6:  X++ <ul><li>Pick your adjective .. </li></ul><ul><li>Making it faster, better, cheaper </li></ul><ul><li>neX...
X++  : Add your favorite adjective <ul><li>Context aware,  </li></ul><ul><li>Adaptive </li></ul><ul><li>(temporally) Coher...
X++  : Add your favorite adjective <ul><li>Good example: Image or video compression schemes </li></ul><ul><li>But X++ is a...
Hexagon Corners for Different Stages <ul><li>[Bruce Tuckman, 1965] </li></ul><ul><li>Forming </li></ul><ul><li>Storming </...
Pitfalls <ul><li>These six ways are only a start  </li></ul><ul><li>They are a good mental exercise and will allow you to ...
What are Bad ideas to pursue <ul><li>X then Y (then Z) </li></ul><ul><ul><li>X+Y is great with true fusion, fusion of diss...
X d X++ X X+Y X X ne X t Ramesh Raskar, MIT Media Lab
End Part 2
Camera Culture Ramesh  Raskar Camera Culture MIT Media Lab http://raskar.info http://cameraculture.info
Extra Slides
CREATIVITY Civic  Media Next Billion Network Siftables Scratch Hyper -  Creativity High- Low Tech CREATIVE ANARCHY Civic  ...
AWARENESS New Media Medicine Smart Cities Sense-able Societies Hyper- Awareness Human Speechome X-Reality TOTAL AWARENESS ...
Today a billion plus people enjoy the benefits of a  digital lifestyle BUT The  deep impact  of technology on individuals,...
Future of the Individual Future of Society Future of Business
Future of the Individual Future of Society Future of Business
Upcoming SlideShare
Loading in …5
×

Raskar Emtech2010 Mar Final

1,664 views

Published on

Published in: Technology, Art & Photos
  • Be the first to comment

  • Be the first to like this

Raskar Emtech2010 Mar Final

  1. 1. Camera Culture Ramesh Raskar Camera Culture MIT Media Lab http://raskar.info http://cameraculture.info Ramesh Raskar Associate Professor Future of Imaging
  2. 2. Film-like Digital Photography
  3. 4. Cameras Phones are Everywhere Kush R. Varshney, “ Jagannath Temple ,” Puri, Orissa, India, Dec. 2007.
  4. 5. Wish List Today <ul><li>Consumers </li></ul><ul><ul><li>Super-human vision </li></ul></ul><ul><ul><li>Microscope like resolution </li></ul></ul><ul><ul><li>High speed (burst, video, no blur) </li></ul></ul><ul><ul><li>See inside the body (health) </li></ul></ul><ul><ul><li>Auto-trigger </li></ul></ul><ul><ul><li>Battery life </li></ul></ul><ul><ul><li>Zero start or shutter delay </li></ul></ul><ul><ul><li>Keep only ‘good’ pics </li></ul></ul><ul><ul><li>Find ‘relevant’ pics and better archiving/access </li></ul></ul><ul><ul><li>Put photographer back in photo! </li></ul></ul><ul><li>Companies </li></ul><ul><ul><li>Cost </li></ul></ul><ul><ul><li>Resolution </li></ul></ul><ul><ul><li>Low-light sensitivity, HDR </li></ul></ul><ul><ul><li>( For cameraphone ) Size and depth </li></ul></ul><ul><ul><li>Stereo and 3D </li></ul></ul><ul><ul><li>Mecha-free zoom/focus </li></ul></ul><ul><ul><li>Auto-tagging for sharing </li></ul></ul><ul><ul><li>Recognition </li></ul></ul>
  5. 6. Computational Photography Computational Illumination Computational Camera Scene : 8D Ray Modulator Display Generalized Sensor Generalized Optics Processing Ray Bender Ray Sampler Ray Reconstruction Generalized Optics Recreate 4D Lightfield Light Sources Modulators 4D Incident Lighting 4D Light Field
  6. 7. Can you look around a corner ?
  7. 9. Convert LCD into a big flat camera ?
  8. 11. Fernald, Science [Sept 2006] Shadow Refractive Reflective
  9. 12. Mimicking the Human Eye Lens Detector Pixels Image Slide by Shree Nayar Reproduce for the eye
  10. 13. Where are the ‘camera’s?
  11. 14. Where are the ‘camera’s?
  12. 15. <ul><li>We focus on creating tools to better capture and share visual information via a new class of imaging platforms </li></ul>Ramesh Raskar Ramesh Raskar http://raskar.info
  13. 16. What is the Media Lab? <ul><li>A Graduate Program in the Media Arts & Sciences Houses ~150 students and 30 PIs </li></ul><ul><li>A Research Lab that spans across disciplines and academic/ industrial lines 65 sponsor companies </li></ul><ul><li>Sponsors get free, non-exclusive licenses for ML IP </li></ul>Founded in 1985 by Nicholas Negroponte and Jerome Wiesner
  14. 17. Media Lab Vision Biomechatronics Neuroengineering Smart Fabrics Rethinking Cameras Human 2.0 Multimedia Ubiquitous Computing Social Media Computer Vision Sensor Networks Software Agents Bits Atoms People 1990s Body Brain Technology 2007+ Publishing Broadcast Computer 1980s
  15. 18. Close Ties With Industry 03/08/10 R E S E A R C H S T R A T E G Y Our 65 corporate sponsors include some of the most creative companies in the world
  16. 19. Center for Future Storytelling <ul><li>Launched with 7-year, $25M funding with Plymouth Rock Studios </li></ul><ul><ul><li>Opportunities for participation by other organizations </li></ul></ul><ul><ul><li>Satellite lab facility to open at Plymouth Rock in 2010 </li></ul></ul><ul><li>3 Co-Directors </li></ul><ul><ul><li>Michael Bove (Object Based Mediaand Displays) </li></ul></ul><ul><ul><li>Cynthia Breazeal (Sociable Robots) </li></ul></ul><ul><ul><li>Ramesh Raskar (Cameras, Performance Capture) </li></ul></ul><ul><ul><li>+ Technical/Creative Advisor (Glorianna Davenport) </li></ul></ul><ul><li>Making stories more interactive, improvisational, social </li></ul><ul><li>Managing the tension between the “master storyteller” and a dynamic, pervasive viewing/listening environment </li></ul><ul><li>Developing new production, distribution, and display technologies </li></ul>MIT Media Laboratory
  17. 20. Smart Cities What if cars could stack like shopping carts in cities? Ryan Chin and Bill Mitchell
  18. 21. ADAPTABILTIY Hyper - Adaptability Bio- Mechatronics Music/Mind/ Health People - Sense Sociable Robots Neuro- Media HUMAN ADAPTABILITY Bio- Mechatronics Neuro- Media Sociable Robots People - Sense Music/Mind/ Health
  19. 22. Camera Culture Ramesh Raskar Ramesh Raskar Associate Professor, MIT Media Lab http://raskar.info New Emerging Technologies Medical Imaging Entertainment User Interfaces Industrial Vision The impact of Next Billion Cameras Movie-making, news reporting Social stability Visual Social Computing Image-based commerce Future of Imaging
  20. 23. Medical Imaging Today .. <ul><li>http://info.med.yale.edu/intmed/cardio/imaging/techniques/ct_imaging/ </li></ul>
  21. 24. Self Evaluation of Eye
  22. 26. Self Evaluation of Eye
  23. 30. What are the problems with ‘real’ photo in conveying information ? Why do we hire artists to draw what can be photographed ?
  24. 31. Shadows Clutter Many Colors Highlight Shape Edges Mark moving parts Basic colors
  25. 32. Cartoon Camera Using Depth Edges
  26. 37. Canny Intensity Edge Detection Our Method Photo Result
  27. 39. Convert LCD into a big flat camera ? Beyond Multi-touch: 3D Gestures
  28. 40. Large Virtual Camera for 3D Interactive HCI and Video Conferencing Matthew Hirsch, Henry Holtzman Doug Lanman, Ramesh Raskar Siggraph Asia 2009 BiDi Screen
  29. 41. Touch + Hover using Thin, Depth Sensing LCD Sensor
  30. 42. Sensing Depth from Array of Virtual Eyes in LCD
  31. 43. Photos of tomorrow: computed not recorded http://scalarmotion.wordpress.com/2009/03/15/propeller-image-aliasing/
  32. 44. Synthesis Low Level Mid Level High Level Hyper realism Raw Angle, spectrum aware Non-visual Data, GPS Metadata Priors Comprehensive 8D reflectance field Computational Photography Digital Epsilon Coded Essence Computational Photography aims to make progress on both axis Camera Array HDR, FoV Focal stack Decomposition problems Depth Spectrum LightFields Human Stereo Vision Transient Imaging Virtual Object Insertion Relighting Augmented Human Experience Material editing from single photo Scene completion from photos Motion Magnification Phototourism Resolution
  33. 45. Camera Culture Ramesh Raskar <ul><li>Understand the World </li></ul><ul><li>Identify/recognize Objects </li></ul><ul><li>3D Awareness </li></ul><ul><li>Interact with embedded information </li></ul>
  34. 46. Can you ‘see’ around a corner ?
  35. 47. Femto-Photography: Higher Dimensional Capture FemtoFlash UltraFast Detector Computational Optics Serious Sync
  36. 48. Application: Rescue and Planning
  37. 50. Bokode
  38. 52. Defocus blur of Bokode
  39. 53. Coding in Angle Mohan, Woo, Smithwick, Hiura, Raskar [Siggraph 2009]
  40. 54. <ul><li>circle of confusion  circle of information </li></ul>camera Bokode (angle) Quote suggested by Kurt Akeley Encoding in Angle , not space, time or wavelength sensor
  41. 55. <ul><li>Product labels </li></ul>Street-view Tagging
  42. 56. cell-phone camera close to the Bokode (10,000+ bytes of data)
  43. 57. Camera Culture Ramesh Raskar <ul><li>Understand the World </li></ul><ul><li>Identify/recognize Objects </li></ul><ul><li>3D Awareness </li></ul><ul><li>Interact with embedded information </li></ul>
  44. 58. Visual Computing <ul><li>Forward (Synthesize) </li></ul><ul><ul><li>Special Effects, Image Processing, Design </li></ul></ul><ul><li>Inverse (Understand) </li></ul><ul><ul><li>Human-like performance </li></ul></ul><ul><ul><li>Recognizing/finding objects, image search </li></ul></ul><ul><ul><li>Challenging ! </li></ul></ul>
  45. 59. Power of the Processor Power of the Network Power of People 1985 1995 2005 2015 Powershifts
  46. 60. Crowdsourcing http://www.wired.com/wired/archive/14.06/crowds.html Amazon Mechanical Turk: Steve Fossett search ReCAPTCHA=OCR
  47. 61. Visual Social Computing <ul><li>Image-based commerce </li></ul><ul><ul><li>By the people, for the people, of the people </li></ul></ul><ul><li>Next Trend in India ? </li></ul><ul><ul><li>Harnessing human power beyond language barriers </li></ul></ul><ul><li>Business Model ? </li></ul><ul><ul><li>Outsource -> Image-based Crowdsource </li></ul></ul>
  48. 62. Cameras in Developing Countries http://news.bbc.co.uk/2/hi/south_asia/7147796.stm Community news program run by village women
  49. 63. Developing Countries: CAMForms <ul><li>Paper forms with barcodes </li></ul><ul><li>83-bit 2D codes (including seven bits of error correction) </li></ul>Parikh (2005)
  50. 64. User Generated Content Visualization <ul><li>Google Map overlayed with geo-tagged photos </li></ul><ul><li>Image-based Mashups </li></ul>http://phototour.cs.washington.edu/ Photo Synth
  51. 65. Socio-Political Goals: B’Tselem From websiteof : Israeli Information Center for Human Rights in the Occupied Territories
  52. 66. Truth in Images From Hany Farid LA Times March’03
  53. 67. Vision thru tongue http://www.pbs.org/kcet/wiredscience/story/97-mixed_feelings.html Solutions for the Visually Challenged http://www.seeingwithsound.com/
  54. 68. Camera Culture Ramesh Raskar How will the next billion cameras change the social culture ? How can we augment the camera to support best ‘image search’ ? How will camera improve trust and social stability ? How will movie-making, news reporting change ? Next model for image-based commerce ? Visual Social Computing
  55. 69. MIT Media Lab Workshops <ul><li>Session before lunch (12:15 to 1pm): </li></ul><ul><li>How to Invent? </li></ul><ul><li>Health, Entertainment and User Interfaces </li></ul><ul><li>Session after lunch: (by Invitation Only) </li></ul><ul><li>How to innovate </li></ul><ul><li>Brainstorming </li></ul>
  56. 70. Camera Culture Ramesh Raskar Ramesh Raskar Associate Professor, MIT Media Lab http://raskar.info New Emerging Technologies Medical Imaging Entertainment User Interfaces Industrial Vision The impact of Next Billion Cameras Movie-making, news reporting Social stability Visual Social Computing Image-based commerce Future of Imaging
  57. 71. END Part 1
  58. 72. Start Part 2
  59. 73. Camera Culture Ramesh Raskar Camera Culture MIT Media Lab http://raskar.info http://cameraculture.info Ramesh Raskar Associate Professor
  60. 74. After X , what is ne X t How to Invent? Ramesh Raskar, MIT Media Lab
  61. 75. X d X++ X X+Y X X ne X t Ramesh Raskar, MIT Media Lab
  62. 76. Simple Exercise .. <ul><li>Image Compression </li></ul><ul><ul><li>Save Bandwidth and storage </li></ul></ul>What is ne X t
  63. 77. Strategy #1: X d <ul><li>Extend it to next dimension (or some other) dimension </li></ul><ul><ul><li>Flickr to Youtube </li></ul></ul><ul><ul><li>Wikipedia to .. ? </li></ul></ul><ul><li>Text, Audio (Speech), Image, Video .. Whats next ? </li></ul><ul><ul><li>CD .. </li></ul></ul><ul><li>Images to infrared, sound, ultrasound </li></ul><ul><li>Macro scale to microscale </li></ul><ul><ul><ul><li>Airbag for car to airbag for .. ? </li></ul></ul></ul>
  64. 78. Strategy #2: X+Y <ul><li>Fusion of the dissimilar </li></ul><ul><ul><li>More dissimilar, more spectacular the output </li></ul></ul><ul><li>Example </li></ul><ul><ul><li>Scientific imaging + Photography </li></ul></ul><ul><ul><ul><li>Coded aperture </li></ul></ul></ul><ul><ul><ul><li>Tomography </li></ul></ul></ul>
  65. 79. Prototype camera <ul><li>4000 × 4000 pixels ÷ 292 × 292 lenses = 14 × 14 pixels per lens </li></ul>Contax medium format camera Kodak 16-megapixel sensor Adaptive Optics microlens array 125 μ square-sided microlenses
  66. 80. Example of digital refocusing
  67. 81. Imaging in Sciences: Computer Tomography <ul><li>http://info.med.yale.edu/intmed/cardio/imaging/techniques/ct_imaging/ </li></ul>
  68. 82. Self Evaluation of Eye
  69. 84. Strategy #3: X Do exactly the opposite <ul><li>Processing, Memory, Bandwidth </li></ul><ul><ul><li>In Computing world, in any era, one of this is a bottleneck </li></ul></ul><ul><ul><li>But overtime, they change. You can often take an older idea and do exactly the opposite. </li></ul></ul><ul><ul><li>E.g. bandwidth is now considered virtually limitless </li></ul></ul><ul><li>Business Process Reengineering (BPR) </li></ul><ul><ul><li>Michael Hammer, James Champy, 1990s </li></ul></ul><ul><li>In imaging: </li></ul><ul><ul><li>SLR: Faster mirror flip or no mirror flip </li></ul></ul><ul><ul><ul><li>Companies spent years improving mirror flip speed </li></ul></ul></ul><ul><ul><ul><li>Why not just remove it? </li></ul></ul></ul><ul><li>More computation </li></ul><ul><li>Less light </li></ul>
  70. 85. <ul><li>Toll Free calls </li></ul><ul><li>Reverse Auction </li></ul>
  71. 86. Power of the Processor Power of the Network Power of People 1985 1995 2005 2015 Powershifts
  72. 87. Larval Trematode Worm
  73. 88. Strategy #4: X <ul><li>Given a Hammer .. </li></ul><ul><ul><li>Find all the nails </li></ul></ul><ul><ul><li>Sometimes even screws and bolts </li></ul></ul><ul><li>Given a cool solution/technique/Opportunity </li></ul><ul><ul><li>Find other problems </li></ul></ul><ul><ul><li>(Where to find them?) </li></ul></ul><ul><li>Examples </li></ul><ul><ul><li>Peltier effect: </li></ul></ul><ul><ul><ul><li>Create a jacket that keeps you warm or cold </li></ul></ul></ul><ul><ul><li>Mobile phone opportunity </li></ul></ul>
  74. 89. Strategy #5: X <ul><li>Given a nail, </li></ul><ul><ul><li>Find all hammers </li></ul></ul><ul><ul><li>Sometimes even screwdrivers and pliers may work </li></ul></ul><ul><li>Given a problem, </li></ul><ul><ul><li>Find other solutions </li></ul></ul><ul><ul><li>(Where to find them?) </li></ul></ul><ul><li>Examples </li></ul><ul><ul><li>App store (Apple) .. Open platform for all devices </li></ul></ul><ul><ul><li>.. </li></ul></ul>
  75. 90. Strategy #6: X++ <ul><li>Pick your adjective .. </li></ul><ul><li>Making it faster, better, cheaper </li></ul><ul><li>neXt = adjective + X </li></ul>
  76. 91. X++ : Add your favorite adjective <ul><li>Context aware, </li></ul><ul><li>Adaptive </li></ul><ul><li>(temporally) Coherent, </li></ul><ul><li>Hierarchical, </li></ul><ul><li>Progressive </li></ul><ul><li>Efficient </li></ul><ul><li>Parallelized </li></ul><ul><li>Distributed </li></ul><ul><li>Good example: Image or video compression schemes </li></ul>
  77. 92. X++ : Add your favorite adjective <ul><li>Good example: Image or video compression schemes </li></ul><ul><li>But X++ is a sign </li></ul><ul><ul><li>The field is maturing in terms of research but booming in business impact </li></ul></ul><ul><li>Kaizen </li></ul><ul><ul><li>Small incremental changes </li></ul></ul><ul><ul><li>Japanese Management styles (6sigma, Kanban) </li></ul></ul><ul><ul><li>Mainly to save money/time/resources. Not everyone can do it. GM, 0.84 suggestions per employee vs Toyota 18. GM accepted 23%, Toyota 90% </li></ul></ul>
  78. 93. Hexagon Corners for Different Stages <ul><li>[Bruce Tuckman, 1965] </li></ul><ul><li>Forming </li></ul><ul><li>Storming </li></ul><ul><li>Norming </li></ul><ul><li>Performing </li></ul><ul><li>Adjourning </li></ul>
  79. 94. Pitfalls <ul><li>These six ways are only a start </li></ul><ul><li>They are a good mental exercise and will allow you to train as a researcher </li></ul><ul><li>Great for projects </li></ul><ul><li>But </li></ul><ul><ul><li>Maynot produce radically new ideas </li></ul></ul><ul><ul><li>Sometimes a danger of being labeled incremental </li></ul></ul><ul><ul><li>Could be into ‘public domain ideas’ </li></ul></ul>
  80. 95. What are Bad ideas to pursue <ul><li>X then Y (then Z) </li></ul><ul><ul><li>X+Y is great with true fusion, fusion of dissimilar is best </li></ul></ul><ul><ul><li>But avoid a ‘pipeline’ systems, where the output of one is THEN channeled into the input of the next stage, and non of the components are novel </li></ul></ul><ul><li>Follow the hype (too much competition) </li></ul><ul><li>Do because it can be done </li></ul><ul><ul><li>(Why do we climb a mountain? because it is there! ) </li></ul></ul><ul><ul><li>But only the first one gets a credit. </li></ul></ul><ul><ul><li>May make you strong, and give you a sense of achievement but not a research project. </li></ul></ul>
  81. 96. X d X++ X X+Y X X ne X t Ramesh Raskar, MIT Media Lab
  82. 97. End Part 2
  83. 98. Camera Culture Ramesh Raskar Camera Culture MIT Media Lab http://raskar.info http://cameraculture.info
  84. 99. Extra Slides
  85. 100. CREATIVITY Civic Media Next Billion Network Siftables Scratch Hyper - Creativity High- Low Tech CREATIVE ANARCHY Civic Media Next Billion Network Siftables Scratch High- Low Tech
  86. 101. AWARENESS New Media Medicine Smart Cities Sense-able Societies Hyper- Awareness Human Speechome X-Reality TOTAL AWARENESS Human Speechome Sense-able Societies X-Reality Smart Cities New Media Medicine
  87. 102. Today a billion plus people enjoy the benefits of a digital lifestyle BUT The deep impact of technology on individuals, society and business lies just ahead. Frank Moss, MIT Media Lab
  88. 103. Future of the Individual Future of Society Future of Business
  89. 104. Future of the Individual Future of Society Future of Business

×