GDG Meets U event - Big data & Wikidata - no lies codelab

CAMELIA BOBAN
CAMELIA BOBANProgrammatrice Java EE presso Lottomatica
BigData & Wikidata - no lies
SPARQL queries on DBPedia
Camelia Boban
BigData & Wikidata - no lies
Resources for the codelab:
Eclipse Luna for J2EE developers - https://www.eclipse.org/downloads/index-developer.php
Java SE 1.8 - http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
Apache Tomcat 8.0.5 - http://tomcat.apache.org/download-80.cgi
Axis2 1.6.2 - http://axis.apache.org/axis2/java/core/download.cgi
Apache Jena 2.11.1 - http://jena.apache.org/download/
Dbpedia Sparql endpoint: - dbpedia.org/sparql
BigData & Wikidata - no lies
JAR needed:
httpclient-4.2.3.jar httpcore-4.2.2.jar Jena-arq-2.11.1.jar
Jena-core-2.11.1.jar Jena-iri-1.0.1.jar jena-sdb-1.4.1.jar jena-tdb-1.0.1.jar
slf4j-api-1.6.4.jar slf4j-log4j12-1.6.4.jar
xercesImpl-2.11.0.jar xml-apis-1.4.01.jar
Attention!!
NO jcl-over-slf4j-1.6.4.jar (slf4j-log4j12-1.6.4 conflict, “Can’t override final class exception”)
NO httpcore-4.0.jar (made by Axis, httpcore-4.2.2.jar conflict, don’t let create the WS)
BigData & Wikidata - no lies
The Semantic Web
The Semantic Web is a project that intends to add computer-processable meaning
(semantics) to the Word Wide Web.
SPARQL
A a protocol and a query language SQL-like for querying RDF graphs via pattern
matching
VIRTUOSO
Both back-end database engine and the HTTP/SPARQL server.
BigData & Wikidata - no lies
BigData & Wikidata - no lies
DBpedia.org
Is the Semantic Web mirror of Wikipedia.
RDF
Is a data model of graphs on subject, predicate, object triples.
APACHE JENA
A free and open source Java framework for building Semantic Web and Linked
Data applications.
ARQ - A SPARQL Processor for Jena for querying Remote SPARQL Services
BigData & Wikidata - no lies
BigData & Wikidata - no lies
DBpedia.org extracts from Wikipedia editions in 119 languages, convert it into RDF
and make this information available on the Web:
★ 24.9 million things (16.8 million from the English Dbpedia);
★ labels and abstracts for 12.6 million unique things;
★ 24.6 million links to images and 27.6 million links to external web pages;
★ 45.0 million external links into other RDF datasets, 67.0 million links to
Wikipedia categories, and 41.2 million YAGO categories.
BigData & Wikidata - no lies
The dataset consists of 2.46 billion RDF triples (470 million were extracted from
the English edition of Wikipedia), 1.98 billion from other language editions, and 45
million are links to external datasets.
DBpedia uses the Resource Description Framework (RDF) as a flexible data
model for representing extracted information and for publishing it on the Web. We
use the SPARQL query language to query this data.
BigData & Wikidata - no lies
BigData & Wikidata - no lies
What is a Triple?
A Triple is the minimal amount of information expressable in Semantic Web. It is
composed of 3 elements:
1. A subject which is a URI (e.g., a "web address") that represents something.
2. A predicate which is another URI that represents a certain property of the
subject.
3. An object which can be a URI or a literal (a string) that is related to the
subject through the predicate.
BigData & Wikidata - no lies
John has the email address john@email.com
(subject) (predicate) (object)
Subjects, predicates, and objects are represented with URIs, which can be
abbreviated as prefixed names.
Objects can also be literals: strings, integers, booleans, etc.
BigData & Wikidata - no lies
Why SPARQL?
SPARQL is a quey language of the Semantic Web that lets us:
1. Extract values from structured and semi-strutured data
2. Explore data by querying unknown relatioships
3. Perform complex join query of various dataset in a unique query
4. Trasform data from a vocabulary in another
BigData & Wikidata - no lies
Structure of a SPARQL query:
● Prefix declarations, for abbreviating URIs ( PREFIX dbpowl:
<http://dbpedia.org/ontology/Mountain> = dbpowl:Mountain)
● Dataset definition, stating what RDF graph(s) are being queried (DBPedia,
Darwin Core Terms, Yago, FOAF - Friend of a Friend)
● A result clause, identifying what information to return from the query The
query pattern, specifying what to query for in the underlying dataset (Select)
● Query modifiers, slicing, ordering, and otherwise rearranging query results -
ORDER BY, GROUP BY
BigData & Wikidata - no lies
BigData & Wikidata - no lies
##EXAMPLE - Give me all cities & towns in Abruzzo with more than 50,000
inhabitants
PREFIX dbpclass: <http://dbpedia.org/class/yago/>
PREFIX dbpprop: <http://dbpedia.org/property/>
SELECT ?resource ?value
WHERE {
?resource a dbpclass:CitiesAndTownsInAbruzzo .
?resource dbpprop:populationTotal ?value .
FILTER ( ?value > 50000 )
}
ORDER BY ?resource ?value
BigData & Wikidata - no lies
BigData & Wikidata - no lies
Some PREFIX:
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX txn: <http://lod.taxonconcept.org/ontology/txn.owl#>
BigData & Wikidata - no lies
DBPEDIA
----------------------------------------------------------------------------------
PREFIX dbp: <http://dbpedia.org/>
PREFIX dbpowl: <http://dbpedia.org/ontology/>
PREFIX dbpres: <http://dbpedia.org/resource/>
PREFIX dbpprop: <http://dbpedia.org/property/>
PREFIX dbpclass: <http://dbpedia.org/class/yago/>
BigData & Wikidata - no lies
Wikipedia articles consist mostly of free text, but also contain different types of
structured information: infobox templates, categorisation information, images,
geo-coordinates, and links to external Web pages. DBpedia transforms into RDF
triples data that are entered in Wikipedia. So creating a page in Wikipedia creates
RDF in DBpedia.
BigData & Wikidata - no lies
BigData & Wikidata - no lies
Example:
https://en.wikipedia.org/wiki/Pulp_Fiction describes the movie. DBpedia creates a
URI: http://dbpedia.org/resource/wikipedia_page_name (where
wikipedia_page_name is the name of the regular Wikipedia html page) =
http://dbpedia.org/page/Pulp_Fiction. Underscore characters replace spaces.
DBpedia can be queried via a Web interface at ttp://dbpedia.org/sparql . The
interface uses the Virtuoso SPARQL Query Editor to query the DBpedia endpoint.
BigData & Wikidata - no lies
Public SPARQL Endpoint - use OpenLink Virtuoso
Wikipedia page: http://en.wikipedia.org/wiki/Pulp_Fiction
DBPedia resource: http://dbpedia.org/page/Pulp_Fiction
InfoBox: dbpedia-owl:abstract; dbpedia-owl:starring; dbpedia-owl:budget;
dbpprop:country; dbpprop:caption ecc.
For instance, the figure below shows the source code and the visualisation of an
infobox template containing structured information about Pulp Fiction.
BigData & Wikidata - no lies
Big&Wikidata - no lies
Big&Wikidata - no lies
PREFIX prop: <http://dbpedia.org/property/>
PREFIX res:<http://dbpedia.org/resource/>
PREFIX owl:<http://dbpedia.org/ontology/>
SELECT DISTINCT ?name ?abstract ?caption ?image ?budget ?director ?cast ?country ?category
WHERE {
res:Pulp_Fiction prop:name ?name ;
owl:abstract ?abstract ;
prop:caption ?caption;
owl:thumbnail ?image;
owl:budget ?budget ;
owl:director ?director ;
owl:starring ?cast ;
prop:country ?country ;
dcterms:subject ?category .
FILTER langMatches( lang(?abstract), 'en').
}
Big&Wikidata - no lies
...
Linked Data is a method of publishing RDF data on the Web and of interlinking
data between different data sources.
Query builder:
➢ http://dbpedia.org/snorql/
➢ http://querybuilder.dbpedia.org/
➢ http://dbpedia.org/isparql/
➢ http://dbpedia.org/fct/
➢ http://it.dbpedia.org/sparql
Prefix variables start with "?"
BigData & Wikidata - no lies
The current RDF vocabularies are available at the following locations:
➔ W3: http://www.w3.org/TR/vcard-rdf/ vCard Ontology - for describing People
and Organizations
http://www.w3.org/2003/01/geo/ Geo Ontology - for spatially-located things
http://www.w3.org/2004/02/geo/ SKOS Simple Knowledge Organization
System
BigData & Wikidata - no lies
➔ GEO NAMES: http://www.geonames.org/ geospatial semantic information
(postal code)
➔ DUBLIN CORE: http://www.dublincore.org/ defines general metadata
attributes used in a particular application
➔ FOAF: http://www.foaf-project.org/ Friend of a Friend, vocabulary for
describing people
➔ UNIPROT: http://www.uniprot.org/core/, http://beta.sparql.uniprot.org/uniprot
for science articles
BigData & Wikidata - no lies
➔ MUSIC ONTOLOGY: http://musicontology.com/, provides terms for
describing artists, albums and tracks.
➔ REVIEW VOCABULARY: http://purl.org/stuff/rev , vocabulary for
representing reviews.
➔ CREATIVE COMMONS (CC): http://creativecommons.org/ns , vocabulary for
describing license terms.
➔ OPEN UNIVERSITY: http://data.open.ac.uk/
BigData & Wikidata - no lies
➔ Semantically-Interlinked Online Communities (SIOC): www.sioc-
project.org/, vocabulary for representing online communities
➔ Description of a Project (DOAP): http://usefulinc.com/doap/, vocabulary for
describing projects
➔ Simple Knowledge Organization System (SKOS):
http://www.w3.org/2004/02/skos/, vocabulary for representing taxonomies and
loosely structured knowledge
BigData & Wikidata - no lies
BigData & Wikidata - no lies
SPARQL queries have two parts (FROM is not indispensable):
1. The query (WHERE) part, which produces a list of variable bindings (although
some variables may be unbound).
2. The part which puts together the results. SELECT, ASK, CONSTRUCT, or
DESCRIBE.
Other keywords:
UNION, OPTIONAL (optional display if data exists), FILTER (conditions), ORDER
BY, GROUP BY
BigData & Wikidata - no lies
SELECT - is effectively what the query returns (a ResultSet)
ASK - just looks to see if there are any results
COSTRUCT - uses a template to make RDF from the results. For each result row
it binds the variables and adds the statements to the result model. If a template
triple contains an unbound variable it is skipped. Return a new RDF-Graph
DESCRIBE - unusual, since it takes each result node, finds triples associated with
it, and adds them to a result model. Return a new RDF-Graph
BigData & Wikidata - no lies
What linked data il good for? Don’t search a single thing, but explore a whole
set of related things together!
1) Revolutionize Wikipedia Search
2) Include DBpedia data in our own web page
3) Mobile and Geographic Applications
4) Document Classification, Annotation and Social Bookmarking
5) Multi-Domain Ontology
6) Nucleus for the Web of Data
BigData & Wikidata - no lies
BigData & Wikidata - no lies
MOBILE
QRpedia.org - MIT Licence
BigData & Wikidata - no lies
WIKIPEDIA DUMPS
● Arabic Wikipedia dumps: http://dumps.wikimedia.org/arwiki/
● Dutch Wikipedia dumps: http://dumps.wikimedia.org/nlwiki/
● English Wikipedia dumps: http://dumps.wikimedia.org/enwiki/
● French Wikipedia dumps: http://dumps.wikimedia.org/frwiki/
● German Wikipedia dumps: http://dumps.wikimedia.org/dewiki/
● Italian Wikipedia dumps: http://dumps.wikimedia.org/itwiki/
● Persian Wikipedia dumps: http://dumps.wikimedia.org/fawiki/
● Polish Wikipedia dumps: http://dumps.wikimedia.org/plwiki/
BigData & Wikidata - no lies
WIKIPEDIA DUMPS
● Portuguese Wikipedia dumps: http://dumps.wikimedia.org/ptwiki/
● Russian Wikipedia dumps: http://dumps.wikimedia.org/ruwiki/
● Serbian Wikipedia dumps: http://dumps.wikimedia.org/srwiki/
● Spanish Wikipedia dumps: http://dumps.wikimedia.org/eswiki/
● Swedish Wikipedia dumps: http://dumps.wikimedia.org/svwiki/
● Ukrainian Wikipedia dumps: http://dumps.wikimedia.org/ukwiki/
● Vietnamese Wikipedia dumps: http://dumps.wikimedia.org/viwiki/
BigData & Wikidata - no lies
LINK
Codelab’s project code: http://github.com/GDG-L-Ab/SparqlOpendataWS
http://dbpedia.org/sparql & http://it.dbpedia.org/sparql
http://wiki.dbpedia.org/Datasets
http://en.wikipedia.org/ & http://it.wikipedia.org/
http://dbpedia.org/snorql, http://data.semanticweb.org/snorql/ SPARQL Explorer
http://downloads.dbpedia.org/3.9/ & http://wiki.dbpedia.org/Downloads39
BigData & Wikidata - no lies
Projects that use linked data:
JAVA: Open Learn Linked data: free access to Open University course materials
PHP: Semantic MediaWiki -Lllets you store and query data within the wiki's pages.
PEARL: WikSAR
PYTHON: Braindump - semantic search in Wikipedia
RUBY: SemperWiki
BigData & Wikidata - no lies
BigData & Wikidata - no lies
THANK YOU! :-)
I AM
CAMELIA BOBAN
G+ : https://plus.google.com/u/0/+cameliaboban
Twitter : http://twitter.com/GDGRomaLAb
LinkedIn: it.linkedin.com/pub/camelia-boban/22/191/313/
Blog: http://blog.aissatechnologies.com/
Skype: camelia.boban
camelia.boban@gmail.com
1 of 43

Recommended

Querying Linked Data on Android by
Querying Linked Data on AndroidQuerying Linked Data on Android
Querying Linked Data on AndroidEUCLID project
5.5K views17 slides
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs by
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIsJosef Petrák
617 views45 slides
RDF data model by
RDF data modelRDF data model
RDF data modelJose Emilio Labra Gayo
3.3K views12 slides
The Semantic Web #10 - SPARQL by
The Semantic Web #10 - SPARQLThe Semantic Web #10 - SPARQL
The Semantic Web #10 - SPARQLMyungjin Lee
1.8K views35 slides
Mon norton tut_queryinglinkeddata02 by
Mon norton tut_queryinglinkeddata02Mon norton tut_queryinglinkeddata02
Mon norton tut_queryinglinkeddata02eswcsummerschool
513 views86 slides
FedX - Optimization Techniques for Federated Query Processing on Linked Data by
FedX - Optimization Techniques for Federated Query Processing on Linked DataFedX - Optimization Techniques for Federated Query Processing on Linked Data
FedX - Optimization Techniques for Federated Query Processing on Linked Dataaschwarte
7.1K views23 slides

More Related Content

What's hot

Federated SPARQL query processing over the Web of Data by
Federated SPARQL query processing over the Web of DataFederated SPARQL query processing over the Web of Data
Federated SPARQL query processing over the Web of DataMuhammad Saleem
2.3K views83 slides
FOAF by
FOAFFOAF
FOAFR A Akerkar
35.4K views35 slides
Semantic Web by
Semantic WebSemantic Web
Semantic Webhardchiu
892 views22 slides
Saveface - Save your Facebook content as RDF data by
Saveface - Save your Facebook content as RDF dataSaveface - Save your Facebook content as RDF data
Saveface - Save your Facebook content as RDF dataFuming Shih
3.3K views20 slides
Federated Query Formulation and Processing Through BioFed by
Federated Query Formulation and Processing Through BioFedFederated Query Formulation and Processing Through BioFed
Federated Query Formulation and Processing Through BioFedMuhammad Saleem
299 views20 slides
An introduction to Semantic Web and Linked Data by
An introduction to Semantic Web and Linked DataAn introduction to Semantic Web and Linked Data
An introduction to Semantic Web and Linked DataFabien Gandon
38.8K views228 slides

What's hot(20)

Federated SPARQL query processing over the Web of Data by Muhammad Saleem
Federated SPARQL query processing over the Web of DataFederated SPARQL query processing over the Web of Data
Federated SPARQL query processing over the Web of Data
Muhammad Saleem2.3K views
Semantic Web by hardchiu
Semantic WebSemantic Web
Semantic Web
hardchiu892 views
Saveface - Save your Facebook content as RDF data by Fuming Shih
Saveface - Save your Facebook content as RDF dataSaveface - Save your Facebook content as RDF data
Saveface - Save your Facebook content as RDF data
Fuming Shih3.3K views
Federated Query Formulation and Processing Through BioFed by Muhammad Saleem
Federated Query Formulation and Processing Through BioFedFederated Query Formulation and Processing Through BioFed
Federated Query Formulation and Processing Through BioFed
Muhammad Saleem299 views
An introduction to Semantic Web and Linked Data by Fabien Gandon
An introduction to Semantic Web and Linked DataAn introduction to Semantic Web and Linked Data
An introduction to Semantic Web and Linked Data
Fabien Gandon38.8K views
Efficient source selection for sparql endpoint federation by Muhammad Saleem
Efficient source selection for sparql endpoint federationEfficient source selection for sparql endpoint federation
Efficient source selection for sparql endpoint federation
Muhammad Saleem642 views
AAT LOD Microthesauri by Marcia Zeng
AAT LOD MicrothesauriAAT LOD Microthesauri
AAT LOD Microthesauri
Marcia Zeng1.6K views
HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation by Muhammad Saleem
HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint FederationHiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation
HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation
Muhammad Saleem1.1K views
2010 06 ipaw_prv by Jun Zhao
2010 06 ipaw_prv2010 06 ipaw_prv
2010 06 ipaw_prv
Jun Zhao443 views
Usage of Linked Data: Introduction and Application Scenarios by EUCLID project
Usage of Linked Data: Introduction and Application ScenariosUsage of Linked Data: Introduction and Application Scenarios
Usage of Linked Data: Introduction and Application Scenarios
EUCLID project33.2K views
Federated SPARQL Query Processing ISWC2015 Tutorial by Muhammad Saleem
Federated SPARQL Query Processing ISWC2015 TutorialFederated SPARQL Query Processing ISWC2015 Tutorial
Federated SPARQL Query Processing ISWC2015 Tutorial
Muhammad Saleem1.1K views
Poster - Completeness Statements about RDF Data Sources and Their Use for Qu... by Fariz Darari
Poster - Completeness Statements about RDF Data Sources and Their Use for Qu...Poster - Completeness Statements about RDF Data Sources and Their Use for Qu...
Poster - Completeness Statements about RDF Data Sources and Their Use for Qu...
Fariz Darari341 views
when the link makes sense by Fabien Gandon
when the link makes sensewhen the link makes sense
when the link makes sense
Fabien Gandon2.5K views
RDFa Introductory Course Session 2/4 How RDFa by Platypus
RDFa Introductory Course Session 2/4 How RDFaRDFa Introductory Course Session 2/4 How RDFa
RDFa Introductory Course Session 2/4 How RDFa
Platypus729 views
Introduction To RDF and RDFS by Nilesh Wagmare
Introduction To RDF and RDFSIntroduction To RDF and RDFS
Introduction To RDF and RDFS
Nilesh Wagmare1.2K views
SAFE: Policy Aware SPARQL Query Federation Over RDF Data Cubes by Muhammad Saleem
SAFE: Policy Aware SPARQL Query Federation Over RDF Data CubesSAFE: Policy Aware SPARQL Query Federation Over RDF Data Cubes
SAFE: Policy Aware SPARQL Query Federation Over RDF Data Cubes
Muhammad Saleem1.1K views

Viewers also liked

Factures d’aigua by
Factures d’aiguaFactures d’aigua
Factures d’aiguaadna1697
320 views12 slides
Mosquera assg 3_1 by
Mosquera assg 3_1Mosquera assg 3_1
Mosquera assg 3_1Gordi Hatch
138 views3 slides
An agency-by-agency guide to Obama's 2014 budget by
An agency-by-agency guide to Obama's 2014 budgetAn agency-by-agency guide to Obama's 2014 budget
An agency-by-agency guide to Obama's 2014 budgetadlerwinona
162 views7 slides
WDG - Wikidonne in wikipedia by
WDG - Wikidonne in wikipediaWDG - Wikidonne in wikipedia
WDG - Wikidonne in wikipediaCAMELIA BOBAN
355 views43 slides
Approccio wiki nella scuola by
Approccio wiki nella scuolaApproccio wiki nella scuola
Approccio wiki nella scuolaCAMELIA BOBAN
275 views90 slides
WDG - Disconnect - essere social ma più sicure in rete by
WDG - Disconnect - essere social ma più sicure in reteWDG - Disconnect - essere social ma più sicure in rete
WDG - Disconnect - essere social ma più sicure in reteCAMELIA BOBAN
514 views48 slides

Viewers also liked(6)

Factures d’aigua by adna1697
Factures d’aiguaFactures d’aigua
Factures d’aigua
adna1697320 views
Mosquera assg 3_1 by Gordi Hatch
Mosquera assg 3_1Mosquera assg 3_1
Mosquera assg 3_1
Gordi Hatch138 views
An agency-by-agency guide to Obama's 2014 budget by adlerwinona
An agency-by-agency guide to Obama's 2014 budgetAn agency-by-agency guide to Obama's 2014 budget
An agency-by-agency guide to Obama's 2014 budget
adlerwinona162 views
WDG - Wikidonne in wikipedia by CAMELIA BOBAN
WDG - Wikidonne in wikipediaWDG - Wikidonne in wikipedia
WDG - Wikidonne in wikipedia
CAMELIA BOBAN355 views
Approccio wiki nella scuola by CAMELIA BOBAN
Approccio wiki nella scuolaApproccio wiki nella scuola
Approccio wiki nella scuola
CAMELIA BOBAN275 views
WDG - Disconnect - essere social ma più sicure in rete by CAMELIA BOBAN
WDG - Disconnect - essere social ma più sicure in reteWDG - Disconnect - essere social ma più sicure in rete
WDG - Disconnect - essere social ma più sicure in rete
CAMELIA BOBAN514 views

Similar to GDG Meets U event - Big data & Wikidata - no lies codelab

How RDFa works by
How RDFa worksHow RDFa works
How RDFa worksJISC Netskills
625 views25 slides
Bio2RDF@BH2010 by
Bio2RDF@BH2010Bio2RDF@BH2010
Bio2RDF@BH2010François Belleau
1.9K views58 slides
2009 0807 Lod Gmod by
2009 0807 Lod Gmod2009 0807 Lod Gmod
2009 0807 Lod GmodJun Zhao
397 views26 slides
Semantic web and Drupal: an introduction by
Semantic web and Drupal: an introductionSemantic web and Drupal: an introduction
Semantic web and Drupal: an introductionKristof Van Tomme
1.3K views36 slides
Querying Linked Data by
Querying Linked DataQuerying Linked Data
Querying Linked DataEUCLID project
15.1K views86 slides
Consuming Linked Data 4/5 Semtech2011 by
Consuming Linked Data 4/5 Semtech2011Consuming Linked Data 4/5 Semtech2011
Consuming Linked Data 4/5 Semtech2011Juan Sequeda
2.3K views69 slides

Similar to GDG Meets U event - Big data & Wikidata - no lies codelab(20)

2009 0807 Lod Gmod by Jun Zhao
2009 0807 Lod Gmod2009 0807 Lod Gmod
2009 0807 Lod Gmod
Jun Zhao397 views
Semantic web and Drupal: an introduction by Kristof Van Tomme
Semantic web and Drupal: an introductionSemantic web and Drupal: an introduction
Semantic web and Drupal: an introduction
Kristof Van Tomme1.3K views
Consuming Linked Data 4/5 Semtech2011 by Juan Sequeda
Consuming Linked Data 4/5 Semtech2011Consuming Linked Data 4/5 Semtech2011
Consuming Linked Data 4/5 Semtech2011
Juan Sequeda2.3K views
Linked data: spreading data over the web by shellac
Linked data: spreading data over the webLinked data: spreading data over the web
Linked data: spreading data over the web
shellac733 views
State of the Semantic Web by Ivan Herman
State of the Semantic WebState of the Semantic Web
State of the Semantic Web
Ivan Herman923 views
Producing, publishing and consuming linked data - CSHALS 2013 by François Belleau
Producing, publishing and consuming linked data - CSHALS 2013Producing, publishing and consuming linked data - CSHALS 2013
Producing, publishing and consuming linked data - CSHALS 2013
François Belleau2.5K views
Presentation at the EMBL-EBI Industry RDF meeting by Johannes Keizer
Presentation at the EMBL-EBI  Industry RDF meetingPresentation at the EMBL-EBI  Industry RDF meeting
Presentation at the EMBL-EBI Industry RDF meeting
Johannes Keizer679 views
Virtuoso Sponger - RDFizer Middleware for creating RDF from non RDF Data Sources by rumito
Virtuoso Sponger - RDFizer Middleware for creating RDF from non RDF Data SourcesVirtuoso Sponger - RDFizer Middleware for creating RDF from non RDF Data Sources
Virtuoso Sponger - RDFizer Middleware for creating RDF from non RDF Data Sources
rumito3.4K views
SemWeb Fundamentals - Info Linking & Layering in Practice by Dan Brickley
SemWeb Fundamentals - Info Linking & Layering in PracticeSemWeb Fundamentals - Info Linking & Layering in Practice
SemWeb Fundamentals - Info Linking & Layering in Practice
Dan Brickley8.3K views
Data Integration And Visualization by Ivan Ermilov
Data Integration And VisualizationData Integration And Visualization
Data Integration And Visualization
Ivan Ermilov985 views
SPARQL1.1 Tutorial, given in UChile by Axel Polleres (DERI) by net2-project
SPARQL1.1 Tutorial, given in UChile by Axel Polleres (DERI)SPARQL1.1 Tutorial, given in UChile by Axel Polleres (DERI)
SPARQL1.1 Tutorial, given in UChile by Axel Polleres (DERI)
net2-project1.7K views

More from CAMELIA BOBAN

WDG - Le donne in Wikipedia. Festival "Rieti Digital" by
WDG - Le donne in Wikipedia. Festival  "Rieti Digital"WDG - Le donne in Wikipedia. Festival  "Rieti Digital"
WDG - Le donne in Wikipedia. Festival "Rieti Digital"CAMELIA BOBAN
160 views62 slides
World Wild Wikidata by
World Wild WikidataWorld Wild Wikidata
World Wild WikidataCAMELIA BOBAN
203 views39 slides
WDG - WikiDonne User Group by
WDG -  WikiDonne User GroupWDG -  WikiDonne User Group
WDG - WikiDonne User GroupCAMELIA BOBAN
84 views58 slides
WDG - Il genere in Wikipedia by
WDG -  Il genere in WikipediaWDG -  Il genere in Wikipedia
WDG - Il genere in WikipediaCAMELIA BOBAN
112 views74 slides
Wiki donne &amp; art + feminism 2018 alla BNN by
Wiki donne &amp; art + feminism 2018 alla BNNWiki donne &amp; art + feminism 2018 alla BNN
Wiki donne &amp; art + feminism 2018 alla BNNCAMELIA BOBAN
103 views54 slides
WDG - Scaling diversity campaigns and programs by
WDG - Scaling diversity campaigns and programsWDG - Scaling diversity campaigns and programs
WDG - Scaling diversity campaigns and programsCAMELIA BOBAN
87 views36 slides

More from CAMELIA BOBAN(20)

WDG - Le donne in Wikipedia. Festival "Rieti Digital" by CAMELIA BOBAN
WDG - Le donne in Wikipedia. Festival  "Rieti Digital"WDG - Le donne in Wikipedia. Festival  "Rieti Digital"
WDG - Le donne in Wikipedia. Festival "Rieti Digital"
CAMELIA BOBAN160 views
WDG - Il genere in Wikipedia by CAMELIA BOBAN
WDG -  Il genere in WikipediaWDG -  Il genere in Wikipedia
WDG - Il genere in Wikipedia
CAMELIA BOBAN112 views
Wiki donne &amp; art + feminism 2018 alla BNN by CAMELIA BOBAN
Wiki donne &amp; art + feminism 2018 alla BNNWiki donne &amp; art + feminism 2018 alla BNN
Wiki donne &amp; art + feminism 2018 alla BNN
CAMELIA BOBAN103 views
WDG - Scaling diversity campaigns and programs by CAMELIA BOBAN
WDG - Scaling diversity campaigns and programsWDG - Scaling diversity campaigns and programs
WDG - Scaling diversity campaigns and programs
CAMELIA BOBAN87 views
WDG - Address the diversity in itwiki by CAMELIA BOBAN
WDG - Address the diversity in itwikiWDG - Address the diversity in itwiki
WDG - Address the diversity in itwiki
CAMELIA BOBAN112 views
WDG - WikiDonne 4 WikiFemHack @ WikiFemHack 2017 by CAMELIA BOBAN
WDG - WikiDonne 4 WikiFemHack  @ WikiFemHack 2017WDG - WikiDonne 4 WikiFemHack  @ WikiFemHack 2017
WDG - WikiDonne 4 WikiFemHack @ WikiFemHack 2017
CAMELIA BOBAN97 views
WDG - One year of WikiDonne @ CEE Meeting 2017 by CAMELIA BOBAN
WDG - One year of WikiDonne  @ CEE Meeting 2017WDG - One year of WikiDonne  @ CEE Meeting 2017
WDG - One year of WikiDonne @ CEE Meeting 2017
CAMELIA BOBAN168 views
WDG - WikiDonne's roadmap @ WikiWomenCamp 2017 by CAMELIA BOBAN
WDG - WikiDonne's roadmap @ WikiWomenCamp 2017WDG - WikiDonne's roadmap @ WikiWomenCamp 2017
WDG - WikiDonne's roadmap @ WikiWomenCamp 2017
CAMELIA BOBAN101 views
WDG - Le donne e le nuove tecnologie: formazione e lavoro by CAMELIA BOBAN
WDG - Le donne e le nuove tecnologie: formazione e lavoroWDG - Le donne e le nuove tecnologie: formazione e lavoro
WDG - Le donne e le nuove tecnologie: formazione e lavoro
CAMELIA BOBAN91 views
WDG - Donne e social media: pericoli e opportunità della rete by CAMELIA BOBAN
WDG - Donne e social media: pericoli e opportunità della reteWDG - Donne e social media: pericoli e opportunità della rete
WDG - Donne e social media: pericoli e opportunità della rete
CAMELIA BOBAN262 views
WDG - Percorsi di parità in Wikipedia by CAMELIA BOBAN
WDG - Percorsi di parità in WikipediaWDG - Percorsi di parità in Wikipedia
WDG - Percorsi di parità in Wikipedia
CAMELIA BOBAN256 views
Let's wiki Linux Day 2016 by CAMELIA BOBAN
Let's wiki Linux Day 2016 Let's wiki Linux Day 2016
Let's wiki Linux Day 2016
CAMELIA BOBAN290 views
WDG - 100 donne contro gli stereotipi by CAMELIA BOBAN
WDG - 100 donne contro gli stereotipiWDG - 100 donne contro gli stereotipi
WDG - 100 donne contro gli stereotipi
CAMELIA BOBAN716 views
WDG - CoderDojo Roma - SID2016 (short version) by CAMELIA BOBAN
WDG - CoderDojo Roma - SID2016  (short version)WDG - CoderDojo Roma - SID2016  (short version)
WDG - CoderDojo Roma - SID2016 (short version)
CAMELIA BOBAN378 views
WMI: Open culture is open mind by CAMELIA BOBAN
WMI: Open culture is open mindWMI: Open culture is open mind
WMI: Open culture is open mind
CAMELIA BOBAN788 views
Angel Eats project presented @ Koding Hackathon by CAMELIA BOBAN
Angel Eats project presented @ Koding HackathonAngel Eats project presented @ Koding Hackathon
Angel Eats project presented @ Koding Hackathon
CAMELIA BOBAN478 views

Recently uploaded

Kyo - Functional Scala 2023.pdf by
Kyo - Functional Scala 2023.pdfKyo - Functional Scala 2023.pdf
Kyo - Functional Scala 2023.pdfFlavio W. Brasil
368 views92 slides
Scaling Knowledge Graph Architectures with AI by
Scaling Knowledge Graph Architectures with AIScaling Knowledge Graph Architectures with AI
Scaling Knowledge Graph Architectures with AIEnterprise Knowledge
30 views15 slides
Five Things You SHOULD Know About Postman by
Five Things You SHOULD Know About PostmanFive Things You SHOULD Know About Postman
Five Things You SHOULD Know About PostmanPostman
33 views43 slides
STKI Israeli Market Study 2023 corrected forecast 2023_24 v3.pdf by
STKI Israeli Market Study 2023   corrected forecast 2023_24 v3.pdfSTKI Israeli Market Study 2023   corrected forecast 2023_24 v3.pdf
STKI Israeli Market Study 2023 corrected forecast 2023_24 v3.pdfDr. Jimmy Schwarzkopf
19 views29 slides
Case Study Copenhagen Energy and Business Central.pdf by
Case Study Copenhagen Energy and Business Central.pdfCase Study Copenhagen Energy and Business Central.pdf
Case Study Copenhagen Energy and Business Central.pdfAitana
16 views3 slides
Transcript: The Details of Description Techniques tips and tangents on altern... by
Transcript: The Details of Description Techniques tips and tangents on altern...Transcript: The Details of Description Techniques tips and tangents on altern...
Transcript: The Details of Description Techniques tips and tangents on altern...BookNet Canada
136 views15 slides

Recently uploaded(20)

Five Things You SHOULD Know About Postman by Postman
Five Things You SHOULD Know About PostmanFive Things You SHOULD Know About Postman
Five Things You SHOULD Know About Postman
Postman33 views
STKI Israeli Market Study 2023 corrected forecast 2023_24 v3.pdf by Dr. Jimmy Schwarzkopf
STKI Israeli Market Study 2023   corrected forecast 2023_24 v3.pdfSTKI Israeli Market Study 2023   corrected forecast 2023_24 v3.pdf
STKI Israeli Market Study 2023 corrected forecast 2023_24 v3.pdf
Case Study Copenhagen Energy and Business Central.pdf by Aitana
Case Study Copenhagen Energy and Business Central.pdfCase Study Copenhagen Energy and Business Central.pdf
Case Study Copenhagen Energy and Business Central.pdf
Aitana16 views
Transcript: The Details of Description Techniques tips and tangents on altern... by BookNet Canada
Transcript: The Details of Description Techniques tips and tangents on altern...Transcript: The Details of Description Techniques tips and tangents on altern...
Transcript: The Details of Description Techniques tips and tangents on altern...
BookNet Canada136 views
HTTP headers that make your website go faster - devs.gent November 2023 by Thijs Feryn
HTTP headers that make your website go faster - devs.gent November 2023HTTP headers that make your website go faster - devs.gent November 2023
HTTP headers that make your website go faster - devs.gent November 2023
Thijs Feryn22 views
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas... by Bernd Ruecker
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
Bernd Ruecker37 views
Igniting Next Level Productivity with AI-Infused Data Integration Workflows by Safe Software
Igniting Next Level Productivity with AI-Infused Data Integration Workflows Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Safe Software263 views
Unit 1_Lecture 2_Physical Design of IoT.pdf by StephenTec
Unit 1_Lecture 2_Physical Design of IoT.pdfUnit 1_Lecture 2_Physical Design of IoT.pdf
Unit 1_Lecture 2_Physical Design of IoT.pdf
StephenTec12 views
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLive by Network Automation Forum
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLiveAutomating a World-Class Technology Conference; Behind the Scenes of CiscoLive
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLive
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院 by IttrainingIttraining
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院
Serverless computing with Google Cloud (2023-24) by wesley chun
Serverless computing with Google Cloud (2023-24)Serverless computing with Google Cloud (2023-24)
Serverless computing with Google Cloud (2023-24)
wesley chun11 views
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N... by James Anderson
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
James Anderson85 views
AMAZON PRODUCT RESEARCH.pdf by JerikkLaureta
AMAZON PRODUCT RESEARCH.pdfAMAZON PRODUCT RESEARCH.pdf
AMAZON PRODUCT RESEARCH.pdf
JerikkLaureta26 views

GDG Meets U event - Big data & Wikidata - no lies codelab

  • 1. BigData & Wikidata - no lies SPARQL queries on DBPedia Camelia Boban
  • 2. BigData & Wikidata - no lies
  • 3. Resources for the codelab: Eclipse Luna for J2EE developers - https://www.eclipse.org/downloads/index-developer.php Java SE 1.8 - http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html Apache Tomcat 8.0.5 - http://tomcat.apache.org/download-80.cgi Axis2 1.6.2 - http://axis.apache.org/axis2/java/core/download.cgi Apache Jena 2.11.1 - http://jena.apache.org/download/ Dbpedia Sparql endpoint: - dbpedia.org/sparql BigData & Wikidata - no lies
  • 4. JAR needed: httpclient-4.2.3.jar httpcore-4.2.2.jar Jena-arq-2.11.1.jar Jena-core-2.11.1.jar Jena-iri-1.0.1.jar jena-sdb-1.4.1.jar jena-tdb-1.0.1.jar slf4j-api-1.6.4.jar slf4j-log4j12-1.6.4.jar xercesImpl-2.11.0.jar xml-apis-1.4.01.jar Attention!! NO jcl-over-slf4j-1.6.4.jar (slf4j-log4j12-1.6.4 conflict, “Can’t override final class exception”) NO httpcore-4.0.jar (made by Axis, httpcore-4.2.2.jar conflict, don’t let create the WS) BigData & Wikidata - no lies
  • 5. The Semantic Web The Semantic Web is a project that intends to add computer-processable meaning (semantics) to the Word Wide Web. SPARQL A a protocol and a query language SQL-like for querying RDF graphs via pattern matching VIRTUOSO Both back-end database engine and the HTTP/SPARQL server. BigData & Wikidata - no lies
  • 6. BigData & Wikidata - no lies
  • 7. DBpedia.org Is the Semantic Web mirror of Wikipedia. RDF Is a data model of graphs on subject, predicate, object triples. APACHE JENA A free and open source Java framework for building Semantic Web and Linked Data applications. ARQ - A SPARQL Processor for Jena for querying Remote SPARQL Services BigData & Wikidata - no lies
  • 8. BigData & Wikidata - no lies
  • 9. DBpedia.org extracts from Wikipedia editions in 119 languages, convert it into RDF and make this information available on the Web: ★ 24.9 million things (16.8 million from the English Dbpedia); ★ labels and abstracts for 12.6 million unique things; ★ 24.6 million links to images and 27.6 million links to external web pages; ★ 45.0 million external links into other RDF datasets, 67.0 million links to Wikipedia categories, and 41.2 million YAGO categories. BigData & Wikidata - no lies
  • 10. The dataset consists of 2.46 billion RDF triples (470 million were extracted from the English edition of Wikipedia), 1.98 billion from other language editions, and 45 million are links to external datasets. DBpedia uses the Resource Description Framework (RDF) as a flexible data model for representing extracted information and for publishing it on the Web. We use the SPARQL query language to query this data. BigData & Wikidata - no lies
  • 11. BigData & Wikidata - no lies
  • 12. What is a Triple? A Triple is the minimal amount of information expressable in Semantic Web. It is composed of 3 elements: 1. A subject which is a URI (e.g., a "web address") that represents something. 2. A predicate which is another URI that represents a certain property of the subject. 3. An object which can be a URI or a literal (a string) that is related to the subject through the predicate. BigData & Wikidata - no lies
  • 13. John has the email address john@email.com (subject) (predicate) (object) Subjects, predicates, and objects are represented with URIs, which can be abbreviated as prefixed names. Objects can also be literals: strings, integers, booleans, etc. BigData & Wikidata - no lies
  • 14. Why SPARQL? SPARQL is a quey language of the Semantic Web that lets us: 1. Extract values from structured and semi-strutured data 2. Explore data by querying unknown relatioships 3. Perform complex join query of various dataset in a unique query 4. Trasform data from a vocabulary in another BigData & Wikidata - no lies
  • 15. Structure of a SPARQL query: ● Prefix declarations, for abbreviating URIs ( PREFIX dbpowl: <http://dbpedia.org/ontology/Mountain> = dbpowl:Mountain) ● Dataset definition, stating what RDF graph(s) are being queried (DBPedia, Darwin Core Terms, Yago, FOAF - Friend of a Friend) ● A result clause, identifying what information to return from the query The query pattern, specifying what to query for in the underlying dataset (Select) ● Query modifiers, slicing, ordering, and otherwise rearranging query results - ORDER BY, GROUP BY BigData & Wikidata - no lies
  • 16. BigData & Wikidata - no lies
  • 17. ##EXAMPLE - Give me all cities & towns in Abruzzo with more than 50,000 inhabitants PREFIX dbpclass: <http://dbpedia.org/class/yago/> PREFIX dbpprop: <http://dbpedia.org/property/> SELECT ?resource ?value WHERE { ?resource a dbpclass:CitiesAndTownsInAbruzzo . ?resource dbpprop:populationTotal ?value . FILTER ( ?value > 50000 ) } ORDER BY ?resource ?value BigData & Wikidata - no lies
  • 18. BigData & Wikidata - no lies
  • 19. Some PREFIX: PREFIX owl: <http://www.w3.org/2002/07/owl#> PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> PREFIX dc: <http://purl.org/dc/elements/1.1/> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX dcterms: <http://purl.org/dc/terms/> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX txn: <http://lod.taxonconcept.org/ontology/txn.owl#> BigData & Wikidata - no lies
  • 20. DBPEDIA ---------------------------------------------------------------------------------- PREFIX dbp: <http://dbpedia.org/> PREFIX dbpowl: <http://dbpedia.org/ontology/> PREFIX dbpres: <http://dbpedia.org/resource/> PREFIX dbpprop: <http://dbpedia.org/property/> PREFIX dbpclass: <http://dbpedia.org/class/yago/> BigData & Wikidata - no lies
  • 21. Wikipedia articles consist mostly of free text, but also contain different types of structured information: infobox templates, categorisation information, images, geo-coordinates, and links to external Web pages. DBpedia transforms into RDF triples data that are entered in Wikipedia. So creating a page in Wikipedia creates RDF in DBpedia. BigData & Wikidata - no lies
  • 22. BigData & Wikidata - no lies
  • 23. Example: https://en.wikipedia.org/wiki/Pulp_Fiction describes the movie. DBpedia creates a URI: http://dbpedia.org/resource/wikipedia_page_name (where wikipedia_page_name is the name of the regular Wikipedia html page) = http://dbpedia.org/page/Pulp_Fiction. Underscore characters replace spaces. DBpedia can be queried via a Web interface at ttp://dbpedia.org/sparql . The interface uses the Virtuoso SPARQL Query Editor to query the DBpedia endpoint. BigData & Wikidata - no lies
  • 24. Public SPARQL Endpoint - use OpenLink Virtuoso Wikipedia page: http://en.wikipedia.org/wiki/Pulp_Fiction DBPedia resource: http://dbpedia.org/page/Pulp_Fiction InfoBox: dbpedia-owl:abstract; dbpedia-owl:starring; dbpedia-owl:budget; dbpprop:country; dbpprop:caption ecc. For instance, the figure below shows the source code and the visualisation of an infobox template containing structured information about Pulp Fiction. BigData & Wikidata - no lies
  • 26. Big&Wikidata - no lies PREFIX prop: <http://dbpedia.org/property/> PREFIX res:<http://dbpedia.org/resource/> PREFIX owl:<http://dbpedia.org/ontology/> SELECT DISTINCT ?name ?abstract ?caption ?image ?budget ?director ?cast ?country ?category WHERE { res:Pulp_Fiction prop:name ?name ; owl:abstract ?abstract ; prop:caption ?caption; owl:thumbnail ?image; owl:budget ?budget ; owl:director ?director ; owl:starring ?cast ; prop:country ?country ; dcterms:subject ?category . FILTER langMatches( lang(?abstract), 'en'). }
  • 27. Big&Wikidata - no lies ...
  • 28. Linked Data is a method of publishing RDF data on the Web and of interlinking data between different data sources. Query builder: ➢ http://dbpedia.org/snorql/ ➢ http://querybuilder.dbpedia.org/ ➢ http://dbpedia.org/isparql/ ➢ http://dbpedia.org/fct/ ➢ http://it.dbpedia.org/sparql Prefix variables start with "?" BigData & Wikidata - no lies
  • 29. The current RDF vocabularies are available at the following locations: ➔ W3: http://www.w3.org/TR/vcard-rdf/ vCard Ontology - for describing People and Organizations http://www.w3.org/2003/01/geo/ Geo Ontology - for spatially-located things http://www.w3.org/2004/02/geo/ SKOS Simple Knowledge Organization System BigData & Wikidata - no lies
  • 30. ➔ GEO NAMES: http://www.geonames.org/ geospatial semantic information (postal code) ➔ DUBLIN CORE: http://www.dublincore.org/ defines general metadata attributes used in a particular application ➔ FOAF: http://www.foaf-project.org/ Friend of a Friend, vocabulary for describing people ➔ UNIPROT: http://www.uniprot.org/core/, http://beta.sparql.uniprot.org/uniprot for science articles BigData & Wikidata - no lies
  • 31. ➔ MUSIC ONTOLOGY: http://musicontology.com/, provides terms for describing artists, albums and tracks. ➔ REVIEW VOCABULARY: http://purl.org/stuff/rev , vocabulary for representing reviews. ➔ CREATIVE COMMONS (CC): http://creativecommons.org/ns , vocabulary for describing license terms. ➔ OPEN UNIVERSITY: http://data.open.ac.uk/ BigData & Wikidata - no lies
  • 32. ➔ Semantically-Interlinked Online Communities (SIOC): www.sioc- project.org/, vocabulary for representing online communities ➔ Description of a Project (DOAP): http://usefulinc.com/doap/, vocabulary for describing projects ➔ Simple Knowledge Organization System (SKOS): http://www.w3.org/2004/02/skos/, vocabulary for representing taxonomies and loosely structured knowledge BigData & Wikidata - no lies
  • 33. BigData & Wikidata - no lies
  • 34. SPARQL queries have two parts (FROM is not indispensable): 1. The query (WHERE) part, which produces a list of variable bindings (although some variables may be unbound). 2. The part which puts together the results. SELECT, ASK, CONSTRUCT, or DESCRIBE. Other keywords: UNION, OPTIONAL (optional display if data exists), FILTER (conditions), ORDER BY, GROUP BY BigData & Wikidata - no lies
  • 35. SELECT - is effectively what the query returns (a ResultSet) ASK - just looks to see if there are any results COSTRUCT - uses a template to make RDF from the results. For each result row it binds the variables and adds the statements to the result model. If a template triple contains an unbound variable it is skipped. Return a new RDF-Graph DESCRIBE - unusual, since it takes each result node, finds triples associated with it, and adds them to a result model. Return a new RDF-Graph BigData & Wikidata - no lies
  • 36. What linked data il good for? Don’t search a single thing, but explore a whole set of related things together! 1) Revolutionize Wikipedia Search 2) Include DBpedia data in our own web page 3) Mobile and Geographic Applications 4) Document Classification, Annotation and Social Bookmarking 5) Multi-Domain Ontology 6) Nucleus for the Web of Data BigData & Wikidata - no lies
  • 37. BigData & Wikidata - no lies
  • 38. MOBILE QRpedia.org - MIT Licence BigData & Wikidata - no lies
  • 39. WIKIPEDIA DUMPS ● Arabic Wikipedia dumps: http://dumps.wikimedia.org/arwiki/ ● Dutch Wikipedia dumps: http://dumps.wikimedia.org/nlwiki/ ● English Wikipedia dumps: http://dumps.wikimedia.org/enwiki/ ● French Wikipedia dumps: http://dumps.wikimedia.org/frwiki/ ● German Wikipedia dumps: http://dumps.wikimedia.org/dewiki/ ● Italian Wikipedia dumps: http://dumps.wikimedia.org/itwiki/ ● Persian Wikipedia dumps: http://dumps.wikimedia.org/fawiki/ ● Polish Wikipedia dumps: http://dumps.wikimedia.org/plwiki/ BigData & Wikidata - no lies
  • 40. WIKIPEDIA DUMPS ● Portuguese Wikipedia dumps: http://dumps.wikimedia.org/ptwiki/ ● Russian Wikipedia dumps: http://dumps.wikimedia.org/ruwiki/ ● Serbian Wikipedia dumps: http://dumps.wikimedia.org/srwiki/ ● Spanish Wikipedia dumps: http://dumps.wikimedia.org/eswiki/ ● Swedish Wikipedia dumps: http://dumps.wikimedia.org/svwiki/ ● Ukrainian Wikipedia dumps: http://dumps.wikimedia.org/ukwiki/ ● Vietnamese Wikipedia dumps: http://dumps.wikimedia.org/viwiki/ BigData & Wikidata - no lies
  • 41. LINK Codelab’s project code: http://github.com/GDG-L-Ab/SparqlOpendataWS http://dbpedia.org/sparql & http://it.dbpedia.org/sparql http://wiki.dbpedia.org/Datasets http://en.wikipedia.org/ & http://it.wikipedia.org/ http://dbpedia.org/snorql, http://data.semanticweb.org/snorql/ SPARQL Explorer http://downloads.dbpedia.org/3.9/ & http://wiki.dbpedia.org/Downloads39 BigData & Wikidata - no lies
  • 42. Projects that use linked data: JAVA: Open Learn Linked data: free access to Open University course materials PHP: Semantic MediaWiki -Lllets you store and query data within the wiki's pages. PEARL: WikSAR PYTHON: Braindump - semantic search in Wikipedia RUBY: SemperWiki BigData & Wikidata - no lies
  • 43. BigData & Wikidata - no lies THANK YOU! :-) I AM CAMELIA BOBAN G+ : https://plus.google.com/u/0/+cameliaboban Twitter : http://twitter.com/GDGRomaLAb LinkedIn: it.linkedin.com/pub/camelia-boban/22/191/313/ Blog: http://blog.aissatechnologies.com/ Skype: camelia.boban camelia.boban@gmail.com