Flexible Test Bed for MVDC and HFAC Electric Power Systems<br />John Herbst<br />Program Manager<br />2011 Advisory Panel ...
Presentation Overview<br />Research Motivation<br />Microgrid Architectures<br />Major Component Descriptions<br />Current...
Commercial Microgrids<br />Generation Sources<br />Active/Passive<br />Rectifier<br />DC-- DC Converter<br />DC Bus<br />U...
Research Motivation<br />Modeling and simulation play a critical role in understanding complex naval power systems<br />Ac...
Microgrid dc Block Diagram<br />5<br />
Microgrid HFAC Block Diagram<br />6<br />
Microgrid Power Supply Components<br />Power supply transformers<br />Two independent multi-tap transformers to enable eva...
Microgrid Converter Components<br />8<br /><ul><li>2 MW bi-directionalconverter
ARCP soft switching topology
Includes 1.25 MW brake chopper
1.25 MW Toshiba Model HX7 VFD
Ac or dc input
4 MW controlled rectifier
3 MW passive rectifier</li></li></ul><li>Microgrid Active Load<br />High speed induction motor<br />2 MW continuous duty<b...
Upcoming SlideShare
Loading in …5
×

Flexible test bed for mvdc and hfac electric power systems herbst - april 2011

1,139 views

Published on

Published in: Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,139
On SlideShare
0
From Embeds
0
Number of Embeds
100
Actions
Shares
0
Downloads
23
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Flexible test bed for mvdc and hfac electric power systems herbst - april 2011

  1. 1. Flexible Test Bed for MVDC and HFAC Electric Power Systems<br />John Herbst<br />Program Manager<br />2011 Advisory Panel Presentation<br />April 27, 2011<br />Electric Ship Research and Development Consortium<br />Industry Day<br />May 28, 2009<br />
  2. 2. Presentation Overview<br />Research Motivation<br />Microgrid Architectures<br />Major Component Descriptions<br />Current Experimental Activities<br />Planned Experimental Activities<br />2<br />
  3. 3. Commercial Microgrids<br />Generation Sources<br />Active/Passive<br />Rectifier<br />DC-- DC Converter<br />DC Bus<br />User<br />Loads<br />Energy <br />Storage<br />Bi-directional<br />DC-- DC Converter<br />Bi-directional<br />Converter<br />Inverter<br />Wind Turbine<br />Solar Array<br />Diesel Generator<br />Fuel Cell<br />Electric Utility<br />Electric Motors<br />Battery Storage<br />Air Conditioner<br />Capacitor Storage<br />Flywheels<br />Data Centers<br />
  4. 4. Research Motivation<br />Modeling and simulation play a critical role in understanding complex naval power systems<br />Active simulation work on multiple power system architectures underway at ESRDC Universities<br />Model validation at significant power levels needed to support large scale implementation of new power system technologies<br />Flexible, MW scale microgrid assembled using equipment from prior power system research<br />4<br />
  5. 5. Microgrid dc Block Diagram<br />5<br />
  6. 6. Microgrid HFAC Block Diagram<br />6<br />
  7. 7. Microgrid Power Supply Components<br />Power supply transformers<br />Two independent multi-tap transformers to enable evaluation of dc grid stability with multiple power sources<br />Currently fed from 480V 3Ø utility taps<br />400A and 1200A breakers<br />Provisions for feed from diesel generators to enable evaluation of “soft” grid <br />7<br />
  8. 8. Microgrid Converter Components<br />8<br /><ul><li>2 MW bi-directionalconverter
  9. 9. ARCP soft switching topology
  10. 10. Includes 1.25 MW brake chopper
  11. 11. 1.25 MW Toshiba Model HX7 VFD
  12. 12. Ac or dc input
  13. 13. 4 MW controlled rectifier
  14. 14. 3 MW passive rectifier</li></li></ul><li>Microgrid Active Load<br />High speed induction motor<br />2 MW continuous duty<br />7,500 – 15,000 rpm<br />KAHN Model 108-080 high speed hydraulic dynamometer<br />Rated 4.8 MW @ 18,000 rpm<br />Vertical or horizontal orientation<br />Programmable speed/torque & transient loading profiles <br />9<br />
  15. 15. Microgrid Passive Loads<br />Variety of air-cooled resistor grids<br />Primary is 2 kV, 1.3 MW locomotive brake resistor<br />3x 250 kW resistors<br />Inductor loads<br />750 V, 300A, 225 kVA each<br />10<br />
  16. 16. Current Microgrid Experiments<br />Series Fault Experiments<br />Exploring impact of both ac and dc series faults on system circuit<br />Controlled separation of electrodes<br />0.1 in/s slow fault<br />386 in/s2 fast fault<br />Measuring voltage and current transients<br />Paper in preparation<br />Developing circuit model to capture behavior for use in larger system simulations<br />Paper in preparation<br />11<br />
  17. 17. Future Experiments<br />Dc grid stability<br />Extensive simulations of dc grid stability issues but little validation at MW power levels<br />Multiple power sources with both passive and active rectifiers<br />Combination of resistive/reactive dynamic loads<br />“Soft” grid with sources and loads of comparable scale<br />Diesel generators in place of stiff utility supplies<br />Supervisory Control Systems<br />“Smart” control of microgrid elements with <br />12<br />
  18. 18. Grid Stability<br />13<br />
  19. 19. Presentation Summary<br />ESRDC is developing a flexible test bed at UT-CEM for validation of MVDC and HFAC power system architectures<br />Modeling and experimentation of ac and dc series faults is currently being conducted<br />Developing dc series fault model<br />Future experiments will explore dc system stability with multiple power sources<br />14<br />

×