Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Energy storage for smart grid and renewables v1


Published on

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

Energy storage for smart grid and renewables v1

  1. 1. Energy Storage for Renewables and MicroGrids<br />John Pappas<br />Center for Electromechanics<br />The University of Texas at Austin<br />
  2. 2. Center Experience<br />Reconfiguration via optimization<br />100+ researchers into energy storage, smart grid, and energy technology<br />Working for seven years on “Smart Grid” for DoD<br />Storage programs in flywheels, batteries, ultracaps, compressed air, and thermal<br />Using a power objective function<br />Subject to:<br />Reconfiguration approach handles:<br /><ul><li>Fuel minimization
  3. 3. Power system protection
  4. 4. Damage mitigation</li></li></ul><li>Long history in storage and load leveling systems<br />Transit Bus <br />Flywheel Battery<br />2 kWhr, 150 kW<br />30,000 rpm<br />Locomotive Load Leveling<br /><ul><li>140kWhr, 2.5 MW
  5. 5. 15,000 rpm</li></ul>Examples of demonstrated systems<br />
  6. 6. Utility Storage Flywheel<br />Pendulum-mounted steel and reinforced flywheel<br />Very large l/d<br />Sited in ground<br />No additional containment<br />Vacuum barrier<br />Surface mounted Motor/generator, bearings, gimbal<br />Life cycle cost lower than batteries<br />Initial cost competitive with batteries<br />
  7. 7. Why CEM’s Focus on Utility Storage?<br />Storage is widely recognized as critical in future power systems<br />Storage enhances insertion of renewables<br />Storage defers need for new transmission lines<br />Storage is needed for stability<br />Storage opens new opportunities for grid optimization<br />
  8. 8. Today’s Technology<br />In today’s grid<br />Batteries<br />CAES<br />Flywheels<br />Pumped hydro<br />Thermal storage<br />All work<br />So, impediment is not solely lack of technology<br />
  9. 9. Critical Questions<br />Where to add storage to grid?<br />Sources<br />Does little for peak congestion<br />Nodes<br />Likely requires largest scale<br />Loads<br />Argument for PHEV’s<br />May be better argument for stationary systems<br />What are the real costs, who pays, who benefits?<br />“Which is best technology?” is not a critical question<br />
  10. 10. Technology Comparisons<br />Given differing maturities, direct technology comparison misleading<br />Level playing field by comparing energy lost<br />Energy lost = Energy lost putting it into storage*<br />plus<br />Energy lost while in storage<br />plus<br />Energy lost retrieving from storage*<br />* Includes opportunity loss if there is a mismatch with the power demand<br />
  11. 11. Basic Efficiency - Data Summary<br />CAES Tank<br />Battery (Lead Acid)<br />Battery (NiCad)<br />Battery<br />(Li lon)<br />Super Capacitor<br />Composite Flywheel<br />Steel Flywheel<br />0.55<br />0.85<br />0.58<br />0.90<br />0.80<br />0.90<br />0.90<br />Turn around efficiency<br />Charge time (hr)<br />Self-discharge time (day)<br />Operating Power (MW)<br />Capital cost of stored<br />Energy ($/Whr)<br />Total stored energy<br />Available (MWhr)<br />Initial Cost of power ($/W)<br />O&M , Installation, Space<br />Total initial cost ($)<br />Total initial cost ($/W)<br />4.0<br />4.0<br />4.0<br />4.0<br />4.0<br />4.0<br />4.0<br />2000<br />2000<br />33<br />2000<br />33<br />1<br />0.55<br />1<br />1<br />1<br />1<br />1<br />1<br />1<br />0.17<br />0.2<br />0.46<br />1.33<br />0.5<br />1.0<br />0.4<br />4<br />4<br />4<br />4<br />4<br />4<br />4<br />0.70<br />0.225<br />0.225<br />0.78<br />0.40<br />0.28<br />0.28<br />1,380,000<br />1,025,000<br />2,065,000<br />6,100,000<br />2,400,000<br />4,280,000<br />1,800,000<br />1.38<br />1.03<br />2.07<br />6.10<br />2.40<br />4.28<br />1.80<br />Too much uncertainty to predict ultimate best choice<br />
  12. 12. Initial Cost of Delivered Energy<br />4.00<br />CAES<br />Lead acid<br />NiCad<br />Li lon<br />Super Cap<br />Comp FW<br />Steel FW<br />3.00<br />2.00<br />Cost per Watt-hr ($/Whr)<br />1.00<br />0.50<br />0.00<br />10<br />9<br />8<br />7<br />6<br />5<br />4<br />3<br />2<br />1<br />0<br />Hours Stored<br />R&D moving flywheel cross-over to 10+ hours <br />
  13. 13. Smart Grid<br />Attributes<br />Permit active participation by consumers <br />Accommodate generation and storage options<br />Enable new products, services, and markets<br />Provide power quality<br />Operate efficiently<br />Reconfigure in response to system disturbances<br />Technology<br />Traditional power engineering<br />Computing<br />Telecommunications<br />
  14. 14. Smart Grid is Growing in Two Directions<br />Top down<br />Large scale wind farms<br />Smart meters<br />Bottom up<br />Microgrids<br />Neighborhoods<br />Industry<br />Universities<br />DoD facilities<br />Urban environments<br />
  15. 15. Microgrid Considerations<br />Understanding source efficiency vs. power demand helps assess storage applicability<br />Gas Turbine Performance<br />0.7<br />0.6<br />(P1,x1)<br />0.5<br />Specific Fuel Consumption (kg/KWHr) x<br />0.4<br />0.3<br />(P2,x2)<br />0.2<br />0<br />5<br />10<br />15<br />20<br />25<br />30<br />35<br />40<br />45<br />50<br />Power (MW)<br />
  16. 16. Load Leveling Via Storage in Microgrid<br />Load Leveling<br />Analytical study comparing external storage vs. using microgrid as storage to achieve load leveling<br />0.3<br />0.2<br />Storage becomes<br />economical<br />Store Efficiency Function<br />0.1<br />Fuel consumption Function<br />0.0<br />0<br />10<br />20<br />30<br />40<br />50<br />60<br />70<br />Duty Cycle About the Mean Operating Point<br />
  17. 17. Benefits From Point Design Analyses<br />Analyses of specific technologies in a point application is the best way to make comparisons<br />Choice among storage technologies and no explicit storage depends on temporal variations within a microgrid<br />Operating economics can be properly compared to other technological imperatives<br />Storage system response times<br />Effect on operating cost of systems other than storage<br />Cost of space used for storage and other systems<br />Technology choices are driven by very specific needs<br />
  18. 18. Summary<br />Storage critical for “Smart Grid”<br />Most agree, but assume different applications<br />Excellent storage choices exist today<br />With R&D, better choices will exist in the future<br />Evolution of “Smart Grid” is a work in progress<br />Storage can help shape the evolution<br />