Overview of Respiration <ul><li>C 6 H 12 O 6  + 6O 2     6CO 2   + 6H 2 O + 38 ATP </li></ul><ul><li>Glucose is highly re...
 
Mitochondrial Structure Matrix Inner Membrane Intermembrane Space Cristae Outer Membrane
Two main types of energy releasing pathways <ul><li>Aerobic respiration - occurring in the presence of of free oxygen </li...
Overview of Processes <ul><li>Glycolysis - breakdown of glucose (6C) into two molecules of pyruvate (3C) </li></ul><ul><li...
All energy-releasing pathways  start with glycolysis <ul><li>Occurs in the  cytoplasm  without the  use of oxygen </li></u...
Glycolysis <ul><li>Occurs in the cytosol outside of mitochondria </li></ul><ul><li>“ Splitting of sugar” </li></ul><ul><li...
 
Energy Investment Phase
Energy Yielding Phase
Substrate Level Phosphorylation Mode of ATP Synthesis Substrate  Phosphorylation Enzyme transfers a phosphate group from a...
<ul><li>ATP made by direct enzymatic transfer of phosphate group from a substrate to ADP </li></ul>
Animation of Glycolysis http://henge.bio.miami.edu/mallery/movies/glycolysis.mov   University of Virginia
Fermentation <ul><li>Occurs in cytosol when “NO Oxygen” is present (called anaerobic) </li></ul><ul><li>Breakdown of gluco...
Alcohol Fermentation <ul><li>Pyruvate forms carbon dioxide & ethanol (ethyl alcohol) </li></ul><ul><li>Plants and Fungi   ...
Alcohol Fermentation
Lactic Acid Fermentation <ul><li>Pyruvate converted to lactate (lactic acid) </li></ul><ul><li>Animals </li></ul><ul><ul><...
Lactic Acid Fermentation
Fermentation <ul><li>ALCOHOLIC </li></ul><ul><li>Plants </li></ul><ul><li>Occurs in the cytoplasm </li></ul><ul><li>Produc...
 
Pyruvic Acid    Acetyl - Co A + CO 2  + NADH
Transition Reaction <ul><li>Occurs in the matrix of the mitochondria </li></ul><ul><li>Occurs only in presence of oxygen <...
Pyruvic Acid    Acetyl - Co A + CO 2  + NADH
Transition Reaction: Pyruvic acid Conversion <ul><li>Made per glucose molecule (2 pyruvic acids) </li></ul><ul><ul><li>2 N...
 
 
Krebs Cycle <ul><li>Citric Acid Cycle </li></ul><ul><li>TCA cycle (Tricarboxylic acid) </li></ul><ul><li>Occurs in the mit...
<ul><li>Acetyl-CoA (2C)  combines with oxaloacetate (4C)  to form citrate (citric acid) (6C) </li></ul><ul><li>Loss of CO ...
Must cycle twice to use up the  2 acetyl CoA produced in the mitochondrial matrix. <ul><li>End products </li></ul><ul><ul>...
Krebs Cycle Animation
 
Electron Transport Chain <ul><li>Occurs in the cristae (inner membrane) </li></ul><ul><li>Receives energy from NADH & FADH...
Establishing  Proton Gradient <ul><li>NADH, FADH 2  are oxidized </li></ul><ul><li>Passes through  embedded molecules </li...
 
Mode of ATP Synthesis Substrate  Phosphorylation Enzyme transfers a phosphate group from a substrate to ADP Oxidative  Pho...
Chemiosmosis <ul><li>Coupled with ETC, can produce 32-34 ATP </li></ul><ul><li>H+ pass from the intermembrane space into t...
 
 
 
Electron Carriers <ul><li>2 NADH produced in glycolysis </li></ul><ul><li>2 NADH produced during acetyl CoA formation </li...
Electron Transport Chain Animation
Aerobic Respiration Overview Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. ...
Krebs Cycle NADH NADH NADH ATP ATP ATP ATP ADP + P i INNER COMPARTMENT OUTER COMPARTMENT acetyl-CoA free oxygen 6  H + flo...
 
Overall Respiration Summary <ul><li>Net ATP production from cellular respiration </li></ul><ul><li>Anaerobic Respiration <...
 
Upcoming SlideShare
Loading in …5
×

Respiration

5,137 views

Published on

Published in: Technology, Business
0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
5,137
On SlideShare
0
From Embeds
0
Number of Embeds
1,725
Actions
Shares
0
Downloads
167
Comments
0
Likes
3
Embeds 0
No embeds

No notes for slide

Respiration

  1. 1. Overview of Respiration <ul><li>C 6 H 12 O 6 + 6O 2  6CO 2 + 6H 2 O + 38 ATP </li></ul><ul><li>Glucose is highly reduced; contains energy </li></ul><ul><li>Oxygen receives the electrons to form energy </li></ul><ul><li>Reactions </li></ul><ul><ul><li>Glycolysis, Transition Reaction, Krebs Cycle, Electron Transport, Chemiosmosis </li></ul></ul><ul><li>Requires Oxygen </li></ul>
  2. 3. Mitochondrial Structure Matrix Inner Membrane Intermembrane Space Cristae Outer Membrane
  3. 4. Two main types of energy releasing pathways <ul><li>Aerobic respiration - occurring in the presence of of free oxygen </li></ul><ul><ul><li>About 50% efficient </li></ul></ul><ul><ul><li>Yields about 38 ATPs </li></ul></ul><ul><li>Anaerobic respiration - occurring without free oxygen </li></ul><ul><ul><li>About 2% efficient </li></ul></ul><ul><ul><li>Yields 2 ATP </li></ul></ul>a.
  4. 5. Overview of Processes <ul><li>Glycolysis - breakdown of glucose (6C) into two molecules of pyruvate (3C) </li></ul><ul><li>Krebs cycle - degrades pyruvate to carbon dioxide, hydrogen ions (H+), and electrons (e-) </li></ul><ul><li>Electron transport chain - processes H+ and e- to generate high yields of ATP </li></ul>
  5. 6. All energy-releasing pathways start with glycolysis <ul><li>Occurs in the cytoplasm without the use of oxygen </li></ul><ul><li>Glucose is split into two pyruvate molecules </li></ul>
  6. 7. Glycolysis <ul><li>Occurs in the cytosol outside of mitochondria </li></ul><ul><li>“ Splitting of sugar” </li></ul><ul><li>Oxygen is the final electron acceptor </li></ul><ul><li>Two phases (10 steps): </li></ul><ul><ul><li>Energy investment phase </li></ul></ul><ul><ul><ul><li>Preparatory phase (first 5 steps) </li></ul></ul></ul><ul><ul><ul><li>Pays with ATP </li></ul></ul></ul><ul><ul><li>Energy yielding phase </li></ul></ul><ul><ul><ul><li>Energy payoff phase (second 5 steps) </li></ul></ul></ul><ul><ul><ul><li>Net gain of ATP and NADH </li></ul></ul></ul>
  7. 9. Energy Investment Phase
  8. 10. Energy Yielding Phase
  9. 11. Substrate Level Phosphorylation Mode of ATP Synthesis Substrate Phosphorylation Enzyme transfers a phosphate group from a substrate to ADP
  10. 12. <ul><li>ATP made by direct enzymatic transfer of phosphate group from a substrate to ADP </li></ul>
  11. 13. Animation of Glycolysis http://henge.bio.miami.edu/mallery/movies/glycolysis.mov University of Virginia
  12. 14. Fermentation <ul><li>Occurs in cytosol when “NO Oxygen” is present (called anaerobic) </li></ul><ul><li>Breakdown of glucose in which organic compounds are the final electron acceptors </li></ul><ul><ul><li>Reduction of pyruvic acid </li></ul></ul><ul><ul><ul><li>Gains e- and H+ from NADH </li></ul></ul></ul><ul><li>Two Types: </li></ul><ul><ul><li>Alcohol Fermentation </li></ul></ul><ul><ul><li>Lactic Acid Fermentation </li></ul></ul>
  13. 15. Alcohol Fermentation <ul><li>Pyruvate forms carbon dioxide & ethanol (ethyl alcohol) </li></ul><ul><li>Plants and Fungi </li></ul><ul><ul><li>Used in baking and to produce alcoholic beverages </li></ul></ul><ul><li>End Products </li></ul><ul><ul><li>2 ATP (substrate-level phosphorylation) </li></ul></ul><ul><ul><li>2 CO 2 </li></ul></ul><ul><ul><li>2 Ethanol </li></ul></ul>
  14. 16. Alcohol Fermentation
  15. 17. Lactic Acid Fermentation <ul><li>Pyruvate converted to lactate (lactic acid) </li></ul><ul><li>Animals </li></ul><ul><ul><li>Used to produce food products, such as cheese, yogurt, sauerkraut </li></ul></ul><ul><ul><li>Can occur in human muscle cells – sore muscles </li></ul></ul><ul><li>End Products: </li></ul><ul><ul><li>2 ATP (substrate-level phosphorylation) </li></ul></ul><ul><ul><li>2 Lactic Acid </li></ul></ul>
  16. 18. Lactic Acid Fermentation
  17. 19. Fermentation <ul><li>ALCOHOLIC </li></ul><ul><li>Plants </li></ul><ul><li>Occurs in the cytoplasm </li></ul><ul><li>Produces: </li></ul><ul><ul><li>2 alcohol </li></ul></ul><ul><ul><li>2 CO2 </li></ul></ul><ul><ul><li>2 NAD+ </li></ul></ul><ul><li>Makes no ATP, only made in glycolysis </li></ul><ul><li>LACTIC ACID </li></ul><ul><li>Animals </li></ul><ul><li>Occurs in cytoplasm </li></ul><ul><li>Produces: </li></ul><ul><ul><li>2 lactic acid </li></ul></ul><ul><ul><li>no CO2 </li></ul></ul><ul><ul><li>2 NAD+ </li></ul></ul><ul><li>No ATP made here, only made in glycolysis </li></ul><ul><li>Causes muscle fatigue </li></ul>
  18. 21. Pyruvic Acid  Acetyl - Co A + CO 2 + NADH
  19. 22. Transition Reaction <ul><li>Occurs in the matrix of the mitochondria </li></ul><ul><li>Occurs only in presence of oxygen </li></ul><ul><li>Pyruvate (3C) is stripped of carbon, producing acetate (2C) and releasing CO 2 </li></ul><ul><ul><li>One molecule of CO 2 is released from each pyruvic acid </li></ul></ul><ul><li>NAD + is reduced to NADH </li></ul><ul><ul><li>NAD+ picks up 2 e- and a H+ </li></ul></ul><ul><li>Acetate couples with Coenzyme A to form Acetyl-CoA </li></ul>
  20. 23. Pyruvic Acid  Acetyl - Co A + CO 2 + NADH
  21. 24. Transition Reaction: Pyruvic acid Conversion <ul><li>Made per glucose molecule (2 pyruvic acids) </li></ul><ul><ul><li>2 NADH </li></ul></ul><ul><ul><li>2 CO 2 </li></ul></ul><ul><ul><li>2 acetyl CoA </li></ul></ul>
  22. 27. Krebs Cycle <ul><li>Citric Acid Cycle </li></ul><ul><li>TCA cycle (Tricarboxylic acid) </li></ul><ul><li>Occurs in the mitochondrial matrix </li></ul><ul><li>Nothing left of the original glucose except CO 2 and H+ and e- of the energy carriers </li></ul>
  23. 28. <ul><li>Acetyl-CoA (2C) combines with oxaloacetate (4C) to form citrate (citric acid) (6C) </li></ul><ul><li>Loss of CO 2 and electrons occur </li></ul><ul><li>Citrate is cycled back to OAA (oxaloacetate) </li></ul><ul><li>NAD+ & FAD pick up e- & H+ </li></ul><ul><li>ATP’s are formed </li></ul><ul><li>Glucose is completely oxidized in the end </li></ul><ul><li>Oxygen must be present, but not part of the reactions </li></ul>Krebs Cycle oxaloacetate malate citrate isocitrate  -ketogluterate fumarate succinate CoA succinyl–CoA ATP NADH NADH NADH NADH FADH 2 NAD + NAD + FAD NAD + CoA CoA H 2 O H 2 O H 2 O ADP + phosphate group (from GTP) pyruvate NAD + CoA Acetyl–CoA coenzyme A (CoA) (CO 2 )
  24. 29. Must cycle twice to use up the 2 acetyl CoA produced in the mitochondrial matrix. <ul><li>End products </li></ul><ul><ul><li>2 ATP </li></ul></ul><ul><ul><li>4 CO 2 </li></ul></ul><ul><ul><li>6 NADH </li></ul></ul><ul><ul><li>2 FADH 2 </li></ul></ul>
  25. 30. Krebs Cycle Animation
  26. 32. Electron Transport Chain <ul><li>Occurs in the cristae (inner membrane) </li></ul><ul><li>Receives energy from NADH & FADH 2 </li></ul><ul><li>Recycles NAD+ & FAD </li></ul><ul><li>Creates H+ gradient across the inner membrane (used by chemiosmosis) </li></ul><ul><ul><li>High H+ in the intermembrane </li></ul></ul><ul><ul><li>Low H+ in the matrix </li></ul></ul><ul><li>Oxygen, then, acts as the final e- acceptor & water is produced </li></ul><ul><li>ATP is not directly produced by the ETC; it is coupled with chemiosmosis </li></ul>
  27. 33. Establishing Proton Gradient <ul><li>NADH, FADH 2 are oxidized </li></ul><ul><li>Passes through embedded molecules </li></ul><ul><ul><li>FMN (Flavoprotein) </li></ul></ul><ul><ul><li>Fe • S (Iron-sulfur protein) </li></ul></ul><ul><ul><li>Q (Ubiquinone-Lipid carrier) </li></ul></ul><ul><ul><li>Cytochromes </li></ul></ul><ul><li>H+ pumped out of matrix </li></ul><ul><li>O 2 acts as final e- acceptor </li></ul><ul><ul><li>Picks up e- & H+ to produce H 2 O </li></ul></ul>
  28. 35. Mode of ATP Synthesis Substrate Phosphorylation Enzyme transfers a phosphate group from a substrate to ADP Oxidative Phosphorylation Enzymes result in the transfer of electrons to O 2 . This transfer of energy is used to phosphorylate ADP with free P i .
  29. 36. Chemiosmosis <ul><li>Coupled with ETC, can produce 32-34 ATP </li></ul><ul><li>H+ pass from the intermembrane space into the mitochrondrial matrix creates a proton-motive force, powering a “molecular mill” </li></ul><ul><li>This “mill” is the ATP synthase protein complex, used to create ATP </li></ul><ul><ul><li>For every NADH molecule – 3 ATP </li></ul></ul><ul><ul><li>For every FADH 2 molecule – 2 ATP </li></ul></ul>
  30. 40. Electron Carriers <ul><li>2 NADH produced in glycolysis </li></ul><ul><li>2 NADH produced during acetyl CoA formation </li></ul><ul><li>6 NADH produced in Krebs Cycle </li></ul><ul><li>10 NADH  30 ATP </li></ul><ul><li>2 FADH2, produced in Krebs Cycle </li></ul><ul><li>2 FADH 2  4 ATP </li></ul>
  31. 41. Electron Transport Chain Animation
  32. 42. Aerobic Respiration Overview Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Glucose Plasma membrane Extracellular fluid Mitochondrion Cytoplasm Pyruvate Glycolysis ATP NADH ATP H 2 O O 2 Electron transport system ATP NADH CO 2 Krebs cycle NADH Acetyl-CoA
  33. 43. Krebs Cycle NADH NADH NADH ATP ATP ATP ATP ADP + P i INNER COMPARTMENT OUTER COMPARTMENT acetyl-CoA free oxygen 6 H + flows back into inner compartment, through ATP synthases. Flow drives ATP formation. 1 Pyruvate from cytoplasm enters inner mitochondrial compartment. 3 NADH and FADH 2 give up electrons and H + to electron transfer chains. 2 Krebs cycle and preparatory steps: NAD + and FADH 2 accept electrons and hydrogen. ATP forms. Carbon dioxide forms. 5 Oxygen accepts electrons, joins with H + to form water. 4 As electrons move through the transfer chains, H + is pumped to outer compartment.
  34. 45. Overall Respiration Summary <ul><li>Net ATP production from cellular respiration </li></ul><ul><li>Anaerobic Respiration </li></ul><ul><ul><li>(Includes Glycolysis = 2 ATP) </li></ul></ul><ul><ul><li>Fermentation = 0 ATP </li></ul></ul><ul><ul><li>Total = 2 ATP </li></ul></ul><ul><li>Aerobic Respiration </li></ul><ul><ul><li>(Includes Glycolysis = 2ATP) </li></ul></ul><ul><ul><li>Kreb’s Cycle = 2 ATP </li></ul></ul><ul><ul><li>Electron Transport = 34ATP </li></ul></ul><ul><ul><li>Total = 38 ATP </li></ul></ul>

×