Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Lesson  8.7 , For use with pages  439-444 How many lines of symmetry does the letter have? 2. 1.
Lesson  8.7 , For use with pages  439-444 How many lines of symmetry does the letter have? ANSWER 2 ANSWER 2 2. 1.
Translations and Rotations Section 8.7 P. 439 - 443
Essential Questions <ul><li>What are the similarities and differences among transformations? </li></ul><ul><li>How are the...
<ul><li>In this section you will learn how  TRANSLATE (slide)   and   ROTATE  (turn)   figures in a coordinate plane. </li...
<ul><li>A translation is a transformation that moves EACH point of a figure the same distance in the same direction.  </li...
 
 
Translation <ul><li>Translation : </li></ul><ul><ul><li>A change in the x: moves the figure left or right </li></ul></ul><...
<ul><li>A translation may look like this: </li></ul><ul><li>(x, y)  (x + 6, y – 3) This means each point is  moved  6 unit...
<ul><li>Describe these translations: </li></ul><ul><li>(x , y)  (x -4, y + 3) (x, y)  (x , y -2) </li></ul>Left 4, up 3 Do...
GUIDED PRACTICE for Example 1  1.   Describe  the translation  from the blue figure to the  red figure. SOLUTION Each poin...
ANSWER R' (–3, 7),  S' (1, 7),  T' (0, 0) 1.     RST  has vertices  R (–1, 4) ,  S (3, 4) , and  T (2, –3) . Translate the...
EXAMPLE 1 Using Coordinate Notation Translate the figure. A (-5,4)  B(-2,3)  C(-2,0)  D(-5,0) SOLUTION Each point moves  6...
EXAMPLE 1 Using Coordinate Notation Translate the blue figure. A (-5,4)  B(-2,3)  C(-2,0)  D(-5,0) ( x ,  y ) ->  ( x  + 6...
Homework <ul><li>Page 442 #4-7, 16AB </li></ul>
Upcoming SlideShare
Loading in …5
×

8.7 translations and rotations 1

1,294 views

Published on

Published in: Business
  • Be the first to comment

  • Be the first to like this

8.7 translations and rotations 1

  1. 1. Lesson 8.7 , For use with pages 439-444 How many lines of symmetry does the letter have? 2. 1.
  2. 2. Lesson 8.7 , For use with pages 439-444 How many lines of symmetry does the letter have? ANSWER 2 ANSWER 2 2. 1.
  3. 3. Translations and Rotations Section 8.7 P. 439 - 443
  4. 4. Essential Questions <ul><li>What are the similarities and differences among transformations? </li></ul><ul><li>How are the principles of transformational geometry used in art, architecture and fashion? </li></ul><ul><li>What are the applications for transformations? </li></ul>
  5. 5. <ul><li>In this section you will learn how TRANSLATE (slide) and ROTATE (turn) figures in a coordinate plane. </li></ul>
  6. 6. <ul><li>A translation is a transformation that moves EACH point of a figure the same distance in the same direction. </li></ul><ul><li>Think of it as “SLIDING” the figure on the coordinate plane. </li></ul><ul><li>The image is congruent to the original figure. </li></ul>
  7. 9. Translation <ul><li>Translation : </li></ul><ul><ul><li>A change in the x: moves the figure left or right </li></ul></ul><ul><ul><ul><li>Add: moves right Subtraction: moves left </li></ul></ul></ul><ul><ul><li>A change in the y: moves the figure up or down </li></ul></ul><ul><ul><ul><li>Add: moves up Subtraction moves down </li></ul></ul></ul>
  8. 10. <ul><li>A translation may look like this: </li></ul><ul><li>(x, y) (x + 6, y – 3) This means each point is moved 6 units to the right and then 3 units down </li></ul>
  9. 11. <ul><li>Describe these translations: </li></ul><ul><li>(x , y) (x -4, y + 3) (x, y) (x , y -2) </li></ul>Left 4, up 3 Down 2
  10. 12. GUIDED PRACTICE for Example 1 1. Describe the translation from the blue figure to the red figure. SOLUTION Each point moves 5 units to the left and 4 units down. The translation is ( x , y ) -> ( x – 5, y – 4) .
  11. 13. ANSWER R' (–3, 7), S' (1, 7), T' (0, 0) 1. RST has vertices R (–1, 4) , S (3, 4) , and T (2, –3) . Translate the figure. ( x , y ) -> ( x – 2 , y + 3). ∆
  12. 14. EXAMPLE 1 Using Coordinate Notation Translate the figure. A (-5,4) B(-2,3) C(-2,0) D(-5,0) SOLUTION Each point moves 6 units to the right and 3 units down. The translation is ( x , y ) -> ( x + 6, y –3)
  13. 15. EXAMPLE 1 Using Coordinate Notation Translate the blue figure. A (-5,4) B(-2,3) C(-2,0) D(-5,0) ( x , y ) -> ( x + 6, y –3)
  14. 16. Homework <ul><li>Page 442 #4-7, 16AB </li></ul>

×